深度学习之线性模型

深度学习之线性模型

y = w * x模型

思路

这里求权重w , 求最适合的权重,就是求损失值最小的时候
这里用穷举法:在一个范围内,列出w的所有值,并且计算出每组数据的平均损失值,以w 为横坐标, 损失值为纵坐标,作图,找到损失值最低的点,对应的就是最适合 的w

import numpy as np
import matplotlib.pyplot as plt

#线性模型: y = w ·  ···* x
# 此次数据集模型: y = 2x
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

def forward(x):
    return x*w

#预测的损失值,预测的y值到真实y值的之差
# 由于可能是正的,也有可能是负的,这里的损失值用它们的平方来表示

def loss(x, y):
    return (forward(x) - y)**2

#穷举法:金肯列举一个范围的所有的w值,求出每个w值的时,三组数据的loss值的平均值,
#以每组数据的w和平均损失值值为 x, y坐标,选出损失值最小的w 作为合适的w

w_list = []
mse_list = []

for w in np.arange(0.0, 4.1, 0.1):
    print("w=", w)
    l_sum = 0
    for x_val, y_val in zip(x_data, y_data):
        y_pred_val = forward(x_val)
        loss_pred_val = loss(x_val, y_val)
        l_sum += loss_pred_val

    print('\t', x_val, y_val, y_pred_val, loss_pred_val)
    print("MSE= ", l_sum / 3)
    w_list.append(w)
    mse_list.append(l_sum/3)

plt.plot(w_list, mse_list)
plt.xlabel("w")
plt.ylabel("ylable")
plt.show()

在这里插入图片描述

如图,w = 2时,损失值最小,所以w = 2是该训练数据合适的权重

y = w * x + b模型

思路

y = w * x + b模型,就需要3D绘图
先利用mershgrid函数, Axes3D函数,建立网格坐标
在利用plot_surface进行绘图

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

#这里设函数为y=3x+2
x_data = [1.0,2.0,3.0]
y_data = [5.0,8.0,11.0]

def forward(x):
    return x * w + b

def loss(x,y):
    y_pred = forward(x)
    return (y_pred-y)*(y_pred-y)

mse_list = []
W=np.arange(0.0,4.1,0.1)
B=np.arange(0.0,4.1,0.1)
[w,b]=np.meshgrid(W,B) #生成2维的网格坐标

l_sum = 0

for x_val, y_val in zip(x_data, y_data):
    y_pred_val = forward(x_val)
    print(y_pred_val)
    loss_val = loss(x_val, y_val)
    l_sum += loss_val

fig = plt.figure()
#ax = Axes3D(fig)

#pycharm版本原因,需要用这样的代码绘制坐标图
ax= Axes3D(fig, auto_add_to_figure=False)
fig.add_axes(ax)

ax.plot_surface(w, b, l_sum/3)
plt.show()

在这里插入图片描述

如果所示,这是该训练数据的图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

温柔了岁月.c

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值