机器学习——模型评估

本文介绍了机器学习模型评估的重要性和常用方法,如混淆矩阵、准确率、精确率、召回率、F1分数、ROC和AUC等。通过实例展示了如何使用KNN分类器进行模型训练,并分析了PR曲线和ROC曲线在不同k值下的表现。最后强调了AUC和PRAUC在模型性能评估中的关键作用。
摘要由CSDN通过智能技术生成

1.机器学习模型评估概述

        机器学习模型评估是对模型性能进行量化和优化的过程。评估不仅涉及对模型在训练集上的性能考察,还包括在测试集上的表现评估。训练集用于训练模型,测试集则用于验证模型在新数据上的泛化能力。此外,为了充分了解模型的性能,还常常采用交叉验证等技术进行评估。

        1.1混淆矩阵

                混淆矩阵是评判模型结果的指标,属于模型评估的一部分。此外,混淆矩阵多用于判断分类器(Classifier)的优劣,适用于分类型的数据模型,如分类树(Classification Tree)、逻辑回归(Logistic Regression)、线性判别分析(Linear Discriminant Analysis)等方法。

TP(True Positive):将正确类预测为正确类,真实为0,预测也为0

FN(False Negative):将正确类预测为错误类,真实为0,预测为1

FP(False Positive):将错误类预测为正确类, 真实为1,预测为0

TN(True Negative):将错误类预测为错误类,真实为1,预测也为1

        1.2模型评估的性能度量指标

                性能度量指标是评估机器学习模型性能的关键工具。常用的性能度量指标包括准确率、精确率、召回率、F1分数、ROC 、AUC面积等。这些指标可用于二分类、多分类和回归等不同类型的机器学习问题。

                准确率:表示预测正确的样本数占总样本数的比例;

                        ​​​​​​​        ​​​​​​​

                精确率:表示预测为正且确实为正的样本数所占的比例;

                                

                召回率:表示预测为负且确实为负的样本数所占的比例;

                                

                F1分数:精确率和召回率的调和平均数,用于综合考虑二者的性能;

                                

                ROC、AUC面积:一种常用的分类性能指标,表示在所有可能的分类阈值下模型的ROC曲线与y=x线之间的面积;

        1.3 过拟合与欠拟合

                 过拟合是指模型在训练集上表现很好,到了验证和测试阶段就很差,即模型的泛化能力很差。

                解决方法:1:重新清洗数据,数据不纯会导致过拟合,此类情况需要重新清洗数据;

                                  2:增加训练样本数量;

                                  3:降低模型复杂程度;

                                  4:减少迭代次数;

                                  5:增大学习率;

                                  6:添加噪声数据;

                                  7:树结构中,可以对树进行剪枝;

                                  8:减少特征项。

                欠拟合是指模型在训练集、验证集和测试集上均表现不佳的情况;

                解决方法:1:添加其他特征项。组合、泛化、相关性、上下文特征、平台特征等特征是特征添加的重要手段,有时候特征项不够会导致模型欠拟合;

                                  2:添加多项式特征。例如将线性模型添加二次项或三次项使模型泛化能力更强;

                                  3:可以增加模型的复杂程度;

                                  4:减小正则化系数。

2. 模型评估实例

        绘制PR曲线和ROC曲线,并在不同的k值下进行比较。

        2.1 代码实现

                2.1.1数据集

                        本次实验用到sklearn库用于生成了一个二分类数据集和划分训练集和测试集。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import precision_recall_curve, roc_curve, auc

# 生成数据集
X, y = make_classification(n_samples=1000, n_classes=2, n_features=10, random_state=55)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

                2.1.2 定义KNN分类器并且训练

                        此时k=5,后续在这修改k值

# 定义KNN分类器
knn = KNeighborsClassifier(n_neighbors=5)

# 训练模型
knn.fit(X_train, y_train)

        2.1.3 绘制PR曲线和ROC曲线       

# 预测测试集
y_pred = knn.predict(X_test)

# 计算PR曲线和ROC曲线
precision, recall, _ = precision_recall_curve(y_test, y_pred)
fpr, tpr, _ = roc_curve(y_test, y_pred)
roc_auc = auc(fpr, tpr)

# 绘制PR曲线
plt.figure(figsize=(8, 6))
plt.plot(recall, precision, color='blue', lw=2, label='PR Curve (AUC = %0.2f)' % auc(precision, recall))
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('PR Curve')
plt.legend(loc='lower right')
plt.show()

# 绘制ROC曲线
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, color='red', lw=2, label='ROC Curve (AUC = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.show()

        2.2 效果分析

        当k=5时,PR曲线

        k=5时,ROC曲线

不同k值下ROC曲线

 

       

        根据实验发现,当k<5时模型曲线变化较大,测试集与训练集差异大;当k>5时模型泛化性提高,曲线趋于平稳。

3. 总结

        PR曲线越靠近右上角说明精确率和召回率高,模型性能越好;PR曲线下的面积(AUC)越大,表示模型性能越优秀。

        ROC曲线越靠近左上角说明召回率高,假阳性率低,说明模型性能越好。ROC曲线下的面积(AUC)越大,表示模型性能越优秀。

        模型评估指标中,AUC表示ROC曲线下的面积,用于衡量模型对正负样本的区分能力;PR AUC表示PR曲线下的面积,用于衡量模型在正类预测上的精确度和召回率之间的平衡。AUC和PR AUC越接近1,模型性能越好。

  • 15
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值