Matlab学习笔记:Matlab实现因子分析的案例

本文介绍了如何在Matlab中进行因子分析,包括数据预处理、主成分分析(PCA)提取因子载荷、方差最大化旋转及使用biplot进行可视化。通过对数据标准化,确保变量均值为0,标准差为1,然后通过因子分析揭示隐藏结构。
摘要由CSDN通过智能技术生成

下面是一个简单的Matlab实现因子分析的案例。

包括数据预处理、因子提取和因子旋转:

% 1. 数据预处理
load data.mat; % 加载数据
x = zscore(data); % 数据标准化

% 2. 因子提取
[cov_mat,~,latent] = pca(x); % 主成分分析
eig_sum = sum(latent); % 特征值之和
loadings = cov_mat./sqrt(eig_sum); % 因子载荷
[~,factors,~] = factoran(x, 2, 'rotate', 'varimax'); % 方差最大化旋转
factor_loadings = loadings * factors; % 旋转后的因子载荷

% 3. 结果可视化
figure;
subplot(1,2,1);
biplot(loadings(:,1:2), 'Scores', x(:,1:2)); % 绘制原始数据和因子载荷图
title('Original data and factor loadings');
subplot(1,2,2);
biplot(factor_loadings(:,1:2), 'Scores', x(:,1:2)); % 绘制旋转后的因子载荷图
title('Rotated factor loadings');

这里解释一下上面的代码:

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值