海明不等式推导

根据教材:

假设传输的数据为:

1001011

在2^n位上不放信息位,放校验位 则

 

  1 000 011  

这样可能还有点难看出规律

但是当校验位达到6位时

dfe7cb5b34da49bba70712808ae9e211.png

 表格中n代表的就是校验位

此时校验位和其能校验的最大信息位为:

1->0

2->1

3->4

4->11

5->26

这样校验位和信息位的关系就能看出来了

设校验位的位数为n,其能表示的最大信息位为An

可以推断出An = (2^(n-1))-1+A(n-1)可能在此页面上还很难看出来

下面我将用笔算计算该数列的通项公式:

2b1ae06f2d53418eb28a72c710c12c02.png

 

 d0348b92962c4b218c063e41c225511a.png

 推导出结果与海明不等式相同

m<=2^k-k-1

至此 海明不等式推导完成 当然是站在先辈们的肩膀上计算的 

如有不对,欢迎评论纠正

 

关于校验码和信息码之间的计算,我还写了一段简单的代码

各位可以试一试:

//传入校验码的位数 返回其可以校验的信息位位数
 public static int hamming(int k) {
        int m = 1;
        if (k > 1) {
            for (int i = 0; i < k - 1; i++) {
                m *= 2;
            }
            return (m - 1) + hamming(k - 1);
        } else {
            return 0;
        }
    }
//传入信息位的位数 返回需要的校验位位数
 public static int reHamming(int m) {
        for (int i = 0; i < 100; i++) {
            if (m > hamming(i) && m <= hamming(i + 1)) {
                return i + 1;
            }
        }
        return 0;
    }

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值