前言
2025年1月,中国春节期间,DeepSeek爆火,称为全球最炙手可热的大模型。DeepSeek一路 “狂飙”,在美国科技界和美股市场掀起惊涛骇浪,1月27日,美国三大股指开盘即暴跌,英伟达、微软、谷歌母公司Alphabet、Meta等美国主要科技股均遭遇股市地震,其中英伟达跌近17%,单日市值蒸发约6000亿美元,创美股最高纪录。
这里以DeepSeek为例介绍在自己本地计算机上部署大模型的方法。操作过程中,遇到很多错误,借助于豆包大模型,把每个错误都解决了,顺利完成了安装过程。我的笔记本电脑是Windows10操作系统。实际上,只要电脑具有8GB内存和30GB可用磁盘空间即可安装最小版本的DeepSeek R1大模型。
特别强调,在自己本地计算机上部署DeepSeek R1大模型,不需要读者具备任何计算机基础知识,也不需要掌握任何编程知识,只要会使用Windows操作系统就可以,按照本文给出的步骤,一步步执行,就可以顺利完成所有操作。
一、为什么需要本地部署大模型
一般而言,DeepSeek、文心一言、豆包、Kimi等在线的大模型,功能非常强大,完全可以很好满足我们的需求。所以,大多数情况下,我们不需要在本地部署大模型。但是,当我们需要保护个人数据隐私时,也可以考虑在本地部署大模型。
和直接使用在线大模型(豆包、Kimi等)相比,在本地部署大模型具有以下优势:
- 数据隐私与安全性。第一,数据本地存储:所有数据运算和存储均在本地完成,不会上传至云端,有效避免了数据在传输和云端存储过程中可能带来的隐私泄露风险。第二,完全掌控数据:用户可以完全掌控数据的使用和存储,确保数据不被未经授权的访问或用于其他目的。第三,隐私保护机制:支持访问权限控制,进一步增强数据安全性。
- 定制化与灵活性。第一,自定义知识库训练:用户可以根据自己的需求对模型进行自定义知识库训练,进一步提升模型在特定领域的性能。第二,灵活调整模型参数:根据业务需求灵活调整模型参数和功能,满足不同场景下的个性化需求。第三,开源灵活性:开源模型一般都允许用户无限制地进行微调或将其集成到自己的项目中。
- 离线与高效使用。第一,离线访问:本地部署后,无需依赖网络连接,适合旅行或网络不稳定的场景,随时随地可用。第二,避免服务器繁忙:再也不用担心“服务器繁忙”的问题,提升使用体验。
- 成本与资源优化。第一,成本可控:长期使用比云服务更经济,尤其适合高频调用场景。第二,硬件友好:对硬件资源要求较低,可在较少GPU或高级CPU集群上运行,资源效率显著。
- 避免使用限制。本地部署避免了可能出现的使用限制,不受未来商业化影响,可永久免费使用。通过本地部署开源大模型,用户不仅能够享受强大的AI功能,还能在数据隐私、定制化需求和使用成本等方面获得显著优势。
二、DeepSeek R1简介
首先需要说明的是,大模型的训练过程需要耗费大量的计算资源(比如投入上亿元构建计算机集群去训练大模型),训练成本比较昂贵,个人是无法承担的。但是,训练得到的大模型,部署到计算机上,就不需要那么高的计算资源要求。但是,即使如此,在DeepSeek出现之前,很多市场上的大模型产品都是“贵族”模型,“段位”很高,通常需要依赖高端的硬件,配置大量的GPU,普通个人计算机一般很难运行大模型。2025年1月20日,我国杭州深度求索公司的DeepSeek R1大模型正式发布,它是一个基于深度学习的推荐系统模型,通常用于处理推荐任务,如商品推荐、内容推荐等。
Deepseek R1的发布,标志着大模型产品的“平民”时代已经到来,它大大降低了对计算机硬件的要求,可以部署在普通的个人计算机上,甚至部署在手机等便携式设备中。Deepseek采用了较为简洁高效的模型架构,去除了一些不必要的复杂结构和计算,在保证模型性能的基础上,降低了对计算资源的需求,使模型在本地计算机上运行更加轻松。通过先进的量化压缩技术,Deepseek将模型的参数进行压缩存储和计算,大大减少了模型所需的存储空间和计算量。2025年1月30日,微软公司宣布支持在Win11电脑本地运行DeepSeek R1大模型。
DeepSeek R1对硬件资源比较友好,对不同硬件配置有良好的适应性,能根据用户计算机硬件配置选择合适的模型版本。入门级设备拥有4GB 存和核显就能运行1.5B(Billion,十亿,大模型参数的数量)版本;进阶设备8GB内存搭配4GB显存就能驾驭7B版本;高性能设备则可选择32B版本。而且,DeepSeek R1支持低配置电脑,即使是没有独立显卡的低配置电脑,只要有足够的空余硬盘空间,如部署最大的6710亿参数的大模型需要至少1TB的空余空间,也能完成部署。
DeepSeek R1可以满足用户的数据隐私需求,本地部署能将所有数据运算都限制在本地,数据不会上传至云端,可有效避免数据传输和存储在云端可能带来的隐私泄露风险,满足用户对数据安全和隐私保护的要求。DeepSeek R1还可以满足定制需求,用户可以根据自己的需求对模型进行自定义知识库训练,进一步提升模型在特定领域的性能。
我们介绍了我们的第一代推理模型DeepSeek-R1-zero和DeepSeek-R1。DeepSeek-R1-Zero是一个通过大规模强化学习(RL)训练的模型,没有监督微调(SFT)作为初步步骤,在推理方面表现出卓越的性能。有了强化学习,DeepSeek-R1-Zero自然就出现了许多强大而有趣的推理行为。然而,DeepSeek-R1-Zero遇到了诸如无休止的重复、可读性差和语言混合等挑战。为了解决这些问题并进一步提高推理性能,引入了DeepSeek-R1,它在强化学习之前包含了冷启动数据。DeepSeek-R1在数学、代码和推理任务方面的性能可与OpenAI-o1媲美。为了支持研究社区,目前开源了DeepSeek-R1-Zero,DeepSeek-R1,以及基于Llama和Qwen的DeepSeek-R1提炼的六个密集模型。DeepSeek-R1-Distill-Qwen-32B在各种基准测试中优于OpenAI-o1-mini,为密集模型实现了新的最先进的结果。
DeepSeek以开源的特性和极低的成本,在数学、编程、自然语言推理等任务上表现出色,性能不亚于美国顶级AI模型。特别是DeepSeek-R1,通过创新性运用强化学习技术,以极少量标注数据实现了推理能力的跨越式提升。在数学、编程、语言理解等核心能力上,完美比肩OpenAI-o1。这一系列创新成果不仅得到了行业的广泛认可,也让世界看到了中国AI技术的崛起之势。
DeepSeek-R1 Models
Model | #Total Params | #Activated Params | Context Length | Download |
---|---|---|---|---|
DeepSeek-R1-Zero | 671B | 37B | 128K | 🤗 HuggingFace |
DeepSeek-R1 | 671B | 37B | 128K | 🤗 HuggingFace |
DeepSeek-R1- zero和DeepSeek-R1是基于DeepSeek-V3-Base训练的。关于模型架构的更多细节,请参考DeepSeek-V3存储库。
DeepSeek-R1-Distill Models
Model | Base Model | Download |
---|---|---|
DeepSeek-R1-Distill-Qwen-1.5B | Qwen2.5-Math-1.5B | 🤗 HuggingFace |
DeepSeek-R1-Distill-Qwen-7B | Qwen2.5-Math-7B | 🤗 HuggingFace |
DeepSeek-R1-Distill-Llama-8B | Llama-3.1-8B | 🤗 HuggingFace |
DeepSeek-R1-Distill-Qwen-14B | Qwen2.5-14B | 🤗 HuggingFace |
DeepSeek-R1-Distill-Qwen-32B | Qwen2.5-32B | 🤗 HuggingFace |
DeepSeek-R1-Distill-Llama-70B | Llama-3.3-70B-Instruct | 🤗 HuggingFace |
DeepSeek-R1-Distill模型基于开源模型进行微调,使用DeepSeek-R1生成的样本。稍微改变了它们的配置和标记器。