春节还没到,DeepSeek就再开源自家生成推理模型——DeepSeek-R1家族

我们介绍了第一代推理模型DeepSeek-R1-Zero和DeepSeek-R1。 DeepSeek-R1-Zero是一个通过大规模强化学习(RL)训练出来的模型,在没有监督微调(SFT)作为初始步骤的情况下,它在推理方面表现出了卓越的性能。 有了 RL,DeepSeek-R1-Zero 自然而然地出现了许多强大而有趣的推理行为。 然而,DeepSeek-R1-Zero也遇到了一些挑战,如无休止的重复、可读性差和语言混杂等。 为了解决这些问题并进一步提高推理性能,我们引入了DeepSeek-R1,它在RL之前加入了冷启动数据。 在数学、代码和推理任务方面,DeepSeek-R1的性能与OpenAI-o1相当。 为了支持研究社区,我们开源了DeepSeek-R1-Zero、DeepSeek-R1以及基于Llama和Qwen从DeepSeek-R1提炼出的六个密集模型。 在各种基准测试中,DeepSeek-R1-Distill-Qwen-32B的表现都优于OpenAI-o1-mini,在密集模型方面取得了新的先进成果。

https://huggingface.co/collections/deepseek-ai/deepseek-r1-678e1e131c0169c0bc89728d

在这里插入图片描述
在这里插入图片描述

模型概要

后期训练: 基础模型的大规模强化学习
  • 我们直接将强化学习(RL)应用于基础模型,而不依赖于作为初步步骤的监督微调(SFT)。 这种方法允许模型探索解决复杂问题的思维链(CoT),从而开发出 DeepSeek-R1-Zero。 DeepSeek-R1-Zero 展示了自我验证、反思和生成长 CoT 等能力,为研究界树立了一个重要的里程碑。 值得注意的是,这是第一项公开研究,验证了 LLM 的推理能力可以纯粹通过 RL 来激励,而无需 SFT。 这一突破为这一领域未来的发展铺平了道路。
  • 我们介绍了开发DeepSeek-R1的流程。 该流程包括两个 RL 阶段,旨在发现改进的推理模式并与人类偏好保持一致;以及两个 SFT 阶段,作为模型推理和非推理能力的种子。 我们相信,通过创建更好的模型,该管道将使整个行业受益。
蒸馏: 较小的型号也可以很强大
  • 我们证明,大型模型的推理模式可以被提炼到较小的模型中,从而比在小型模型上通过 RL 发现的推理模式具有更好的性能。 开源的 DeepSeek-R1 及其应用程序接口将有助于研究界在未来提炼出更好的小型模型。
  • 利用 DeepSeek-R1 生成的推理数据,我们对研究界广泛使用的几个密集模型进行了微调。 评估结果表明,经过提炼的小型密集模型在基准测试中表现优异。 我们向社区开源了基于 Qwen2.5 和 Llama3 系列的 1.5B、7B、8B、14B、32B 和 70B 检查点。

模型下载

DeepSeek-R1 Models
Model#Total Params#Activated ParamsContext LengthDownload
DeepSeek-R1-Zero671B37B128K🤗 HuggingFace
DeepSeek-R1671B37B128K🤗 HuggingFace

DeepSeek-R1-Zero 和 DeepSeek-R1 基于 DeepSeek-V3-Base 训练。 有关模型架构的更多详情,请参阅 DeepSeek-V3 存储库

DeepSeek-R1-Distill Models
ModelBase ModelDownload
DeepSeek-R1-Distill-Qwen-1.5BQwen2.5-Math-1.5B🤗 HuggingFace
DeepSeek-R1-Distill-Qwen-7BQwen2.5-Math-7B🤗 HuggingFace
DeepSeek-R1-Distill-Llama-8BLlama-3.1-8B🤗 HuggingFace
DeepSeek-R1-Distill-Qwen-14BQwen2.5-14B🤗 HuggingFace
DeepSeek-R1-Distill-Qwen-32BQwen2.5-32B🤗 HuggingFace
DeepSeek-R1-Distill-Llama-70BLlama-3.3-70B-Instruct🤗 HuggingFace
DeepSeek-R1-Distill 模型是在开源模型的基础上,利用 DeepSeek-R1 生成的样本进行微调的。 我们对其配置和标记化器稍作改动。 请使用我们的设置运行这些模型。

评估结果

DeepSeek-R1 评估
CategoryBenchmark (Metric)Claude-3.5-Sonnet-1022GPT-4o 0513DeepSeek V3OpenAI o1-miniOpenAI o1-1217DeepSeek R1
Architecture--MoE--MoE
# Activated Params--37B--37B
# Total Params--671B--671B
EnglishMMLU (Pass@1)88.387.288.585.291.890.8
MMLU-Redux (EM)88.988.089.186.7-92.9
MMLU-Pro (EM)78.072.675.980.3-84.0
DROP (3-shot F1)88.383.791.683.990.292.2
IF-Eval (Prompt Strict)86.584.386.184.8-83.3
GPQA-Diamond (Pass@1)65.049.959.160.075.771.5
SimpleQA (Correct)28.438.224.97.047.030.1
FRAMES (Acc.)72.580.573.376.9-82.5
AlpacaEval2.0 (LC-winrate)52.051.170.057.8-87.6
ArenaHard (GPT-4-1106)85.280.485.592.0-92.3
CodeLiveCodeBench (Pass@1-COT)33.834.2-53.863.465.9
Codeforces (Percentile)20.323.658.793.496.696.3
Codeforces (Rating)7177591134182020612029
SWE Verified (Resolved)50.838.842.041.648.949.2
Aider-Polyglot (Acc.)45.316.049.632.961.753.3
MathAIME 2024 (Pass@1)16.09.339.263.679.279.8
MATH-500 (Pass@1)78.374.690.290.096.497.3
CNMO 2024 (Pass@1)13.110.843.267.6-78.8
ChineseCLUEWSC (EM)85.487.990.989.9-92.8
C-Eval (EM)76.776.086.568.9-91.8
C-SimpleQA (Correct)55.458.768.040.3-63.7
蒸馏模型评估
ModelAIME 2024 pass@1AIME 2024 cons@64MATH-500 pass@1GPQA Diamond pass@1LiveCodeBench pass@1CodeForces rating
GPT-4o-05139.313.474.649.932.9759
Claude-3.5-Sonnet-102216.026.778.365.038.9717
o1-mini63.680.090.060.053.81820
QwQ-32B-Preview44.060.090.654.541.91316
DeepSeek-R1-Distill-Qwen-1.5B28.952.783.933.816.9954
DeepSeek-R1-Distill-Qwen-7B55.583.392.849.137.61189
DeepSeek-R1-Distill-Qwen-14B69.780.093.959.153.11481
DeepSeek-R1-Distill-Qwen-32B72.683.394.362.157.21691
DeepSeek-R1-Distill-Llama-8B50.480.089.149.039.61205
DeepSeek-R1-Distill-Llama-70B70.086.794.565.257.51633

聊天网站和API平台

您可以在DeepSeek的官方网站:chat.deepseek.com上与DeepSeek-R1聊天,并点击 "DeepThink "按钮 我们还在DeepSeek平台上提供了与OpenAI兼容的API:platform.deepseek.com

如何在本地运行

DeepSeek-R1 模型

有关在本地运行 DeepSeek-R1 的更多信息,请访问 DeepSeek-V3 repo。

DeepSeek-R1-Distill 模型

DeepSeek-R1-Distill 模型的使用方式与 Qwen 或 Llama 模型相同。
例如,你可以使用 vLLM 轻松启动服务:

vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --tensor-parallel-size 2 --max-model-len 32768 --enforce-eager

注意:我们建议在运行这些模型时设置适当的 temperature (0.5 至 0.7 之间),否则可能会出现无休止重复或输出不连贯的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值