学习之初
Python在各个专业都有广泛的应用,以其简单易用、拓展性强的特点占据了各个类型实验室的数据处理、图像处理等工作,同时由于其他专业+人工智能/深度学习方向的火热,导致Python热度高涨,这里为大家(主要是没基础刚接触编程,或主要编程语言不是Python的同学)提供入门教学。
之前写nnUNetv2的配置时就有打算写一篇Python环境配置基础,但一直拖了很久。这一篇就和上一篇文章互通有无,可以相互借鉴,观察一下在实际项目中如何应用以及配置Python环境
nnU-Netv2保姆级入门使用教程,从环境配置到训练与推理(踩坑排雷版)-CSDN博客
了解Python
Python 在通用应用程序、自动化插件、网站、网络爬虫、数值分析、科学计算、云计算
、大数据和网络编程等领域有着极为广泛的应用。近年来,深度学习为人工智能指明了方向。Python 语言简单针对深度学习的算法,独特的深度学习框架,丰富的第三方库以及易于配置任务环境的特点使其在人工智能领域编程语言中占重要地位。
目前Python已经从2.0迭代到了3.0版本,同时官方也停止对2.0版本的维护,目前Python3.x已经成为最主流的Python版本,本篇教程就是关于Python3.x的安装与环境配置(Pycharm与Anaconda)
软件安装
本次教程为大家讲解如何使用Anaconda来为Python进行环境与库管理,IDE使用Pycharm
安装包会放在评论区百度网盘链接里,需要自取
Anaconda安装
我们学习Python为什么需要安装Anaconda呢?
要弄懂这个问题,首先我们要了解编程语言,当我们写下一篇极为标准的.py文件后,我们需要有解释器来运行,就是我们平常安装的python.exe,同时脚本内也会有很多所需要引入的库。
在python中,我们写程序的时候经常离不开第三方库,我们可以称之为包。包可以理解成一个工具,我们要通过这个工具去实现我们所需要的功能。怎样使用这个工具呢?毫无疑问,我们都是import引入进脚本内使用。但是,import初始只能导入python自带的库,第三方库需要我们自己通过cmd(命令提示符)去pip install进行安装,及其麻烦,因为很多库都是python不自带的,我们都是要通过pip额外安装。
那么每一个Python脚本所需的环境就是解释器与包集合,每一个Python所需的环境不同,解释器版本与包都可能不同,所需的环境不同。
如果在本地只有一个Python环境那我的所有程序用到的各种包都只能放到同一个环境中,导致环境混乱(比如AB两个脚本对C这个包有不同的版本需求)。另外当我将写好的程序放到另一电脑上运行时又会遇到缺少相关包,需要自己手动一个个下载。要是能每个程序开发都选用不同的环境,而开发好之后又能将该程序需要的环境都独立打包出来就好了。
这个时候Anaconda的作用就出来了,Anaconda首先是自带了大部分的包,少部分缺少的我们只需要按需在Pycharm编辑器的终端中conda install就可以了,比使用cmd会简单方便很多。其次我们可以创建很多虚拟环境,我们如何理解这个虚拟环境呢?
用泰拉瑞亚打个比方,环境就是游戏中我们不同的工作台,木制工作台、铁砧、秘银砧、熔炉等等,每一个工作台都对应不同的功能,可以完成不同的任务。我们配置环境的过程就是合成这个工作台的过程,当我们创建好一个环境,就可以用这个“工作台”来完成目标任务。在创建虚拟环境中,我们可以自定义安装的解释器版本,那么自此我们就实现了Python任务中的前置要求最重要的部分——环境管理(包括创建与管理不同的环境,下载不同的解释器与第三方包)
现在Anaconda介绍完毕了,我们开始正式安装Anaconda
不建议从官网下载Anaconda,推荐使用清华镜像源,版本一目了然,下载更快。
Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror
这里同一个版本会分三个操作系统(64位操作系统就选择_64)不推荐下载最新版本,因为我们对Anaconda的需求仅仅是管理包,其新版本对我们作用不大。我提供的百度网盘链接有2021windows_64版本,可以直接用这个版本。有特殊需求可以进镜像源网站找自己需要的版本下载。
首先我们打开运行Anaconda3安装包,开始安装
复制这个软件名称,然后选择我们要安装的磁盘位置(一般不选C,除非没有分盘)因为创建多个虚拟环境需要下载很多不同的包或解释器,占用大量磁盘空间(重新选择磁盘位置后不会新建文件夹,所以让大家复制好软件名称然后粘贴在新磁盘中,不会那么乱,实际上文件夹名称不重要)
按照工具安装的惯例,整个下载目录中不要有中文
这两个不勾选,然后我们在搜索栏中搜索Anaconda,可以看到有以下相关,点击打开划线的那项
打开后能进入到这个页面就说明我们安装成功,如果一直卡住无响应可以尝试重启。
还可以通过打开输入conda ---version检查版本
来确认是否安装成功
配置环境变量
windows+i打开设置中的系统,进入系统信息
选择高级系统设置
打开环境变量
系统变量中选择Path,双击打开
点击新建
F:\Anaconda3
F:\Anaconda3\Scripts
F:\Anaconda3\Library\bin
F:\Anaconda3\Library\mingw-w64\bin
按照自己的安装位置新建以上四条,然后确定
创建虚拟环境
Anaconda安装完成我们就可以开始创建虚拟环境了
打开这个CMD,然后输入 conda create -n xx python=xx(-n后空格接虚拟环境名称,python=xx是下载所需要的Python版本)矩形框中的Warning不管,提示的是有最新conda版本
然后输入y,等待一小会儿就可以发现虚拟环境创建成功了
为了给大家演示,我多创建了一个虚拟环境,命令差别在于python版本后跟了一个空格-y,作用是跳过y/n的确认环节,在需要确认的命令中都可以使用这个方法
安装完毕后是这个界面,注意矩形框,表明我们现在仍在默认的base环境下,我们要切换环境就需要使用其他的conda命令。首先我们先来查看刚刚创建的两个虚拟环境
命令是:conda env list
星号表示的是当前环境,检查这条命令后很有可能会发现其环境所在目录并不是我们想要的磁盘位置,这个时候我们可以输入命令:conda info
注意三个划线部分,第一个是我们的库安装源(可以理解为我们从哪个网站来下载第三方包)
第二个是我们的包默认安装位置,第三个是我们的环境默认安装位置。这篇教程我是借用室友电脑来写的,这个地方默认就是我所想要的位置,如果是默认为C盘,需要修改我们怎么操作呢?
打开此电脑,进入C盘的用户文件夹,进入你的用户名文件夹
找到.condarc文件,右键打开方式选择记事本
Ps:如果没有.condarc文件,请win+r输入cmd,打开命令提示符,输入命令:
conda config --set show_channel_urls yes
打开后如图
复制以下内容后粘贴到该文件夹(原来的删掉)ctrl+s保存
envs_dirs:
- F:\Anaconda3\envs
pkgs_dirs:
- F:\Anaconda3\pkgs
(磁盘位置按照自己的下载路径)
如图
再输入命令:conda info
可以发现package和envs的安装位置都有改变(如果第一遍info就发现envs和package的默认下载位置就是想要的磁盘位置,可以跳过这一步)
接下来我们修改默认的镜像源(因为默认的源下载很多东西都是从国外下载,常常会遇到断联或下载速度慢的问题,所以需要修改成国内的镜像源,是国内的机构创建的镜像网站)在后续任务中如果遇到下载某个包不成功的问题,我们同样可以进行修改镜像源的操作
方法一:cmd中修改
# 添加清华源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
# 添加阿里云镜像源
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/free/
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/main/
# 添加中科大源
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/
# (可选)设置搜索时显示通道地址
conda config --set show_channel_urls yes
这里修改为清华源,效果如图
然后我们再次执行命令:conda info 进行检查
可以发现channel URLs 发生了改变,表示我们修改成功
重新打开之前的.condarc也会发现其中内容发生了改变
PS:还可以通过命令:conda config --show 进行检查
方法二:从.condarc文件中进行修改
阿里云镜像源
channels:
- defaults
show_channel_urls: true
default_channels:
- http://mirrors.aliyun.com/anaconda/pkgs/main
- http://mirrors.aliyun.com/anaconda/pkgs/r
- http://mirrors.aliyun.com/anaconda/pkgs/msys2
custom_channels:
conda-forge: http://mirrors.aliyun.com/anaconda/cloud
msys2: http://mirrors.aliyun.com/anaconda/cloud
bioconda: http://mirrors.aliyun.com/anaconda/cloud
menpo: http://mirrors.aliyun.com/anaconda/cloud
pytorch: http://mirrors.aliyun.com/anaconda/cloud
simpleitk: http://mirrors.aliyun.com/anaconda/cloud
清华镜像源(推荐)
channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
复制其中一个内容粘贴在刚刚.condarc文件下就可以(原来内容不要删除,否则我们修改的envs和package安装位置就失效了)有需要其他的镜像源可以自己在网上搜索,这里只是提供方法
激活虚拟环境
在cmd中输入命令:conda activate xx(环境名称)
可以发现括号中的环境名称发生了改变,变成了ikkks,我们下载包一般是在我们新建的虚拟环境中下载,而不是在默认的base环境下,除非需要用base环境来完成某些任务
接下来我们安装一个包,例如numpy 输入命令:conda install xx
同样的,我切换一个环境为大家再演示一次更多的内容
输入命令:conda activate xx
可以指定包的版本进行下载 比如上图中:conda install pandas==1.2 -y
表示下载pandas1.2版本,-y表示确定,跳过询问环节
下载过程中我想取消这个命令,ctrl+c ,跳出condaerror,报错内容可以自己翻译一下,再ctrl+c一次,会跳出是否终止,我们就取消了这次任务。这个有关包版本下载的具体使用案例在我的另一篇博文中有如下图(其实这篇教程可以与其相互对照互通有无)
更多相关的conda命令大家可以自行了解,多介绍一下卸载命令:
在当前环境下删除xx包:conda remove xx
(同样需要确定操作y/n,没有截进来)
在base环境下进行,彻底删除xx环境:conda remove -n xx --all
Pycharm安装
Pycharm官网地址:Download PyCharm: The Python IDE for data science and web development by JetBrains
两个版本的对比(没有特殊要求其实可以安装社区版)支持正版0.0
安装建议与我上一篇blog相同,不建议安装最新版本。
另外博主提供2022专业版Pycharm,在评论区百度网盘链接
双击打开(无论是什么软件的破解过程,大家都一定要按照教程来,不然后续会很麻烦)
选择安装路径
全部勾选
安装后选择稍后启动,不要打开桌面上的Pycharm
后续操作参考我提供的文件夹中使用说明
中文插件安装
在Plugins中搜索chinese,simplified是简体的意思,直接install
restart IDE(重启Pycharm)就切换成中文了(这一步根据自己需要,有的同学需要切中文)
桌面新建文件夹(命名)拖到Pycharm上即为以该方式打开,那么这个文件夹就是我们的项目了
修改终端打开方式
修改成cmd(并不强制,建议修改)这样我们可以在pycharm中对环境进行管理
点击下面的终端就可以发现我们已经修改成功了,当前环境为base,运行的项目是桌面的iks项目
设置conda环境
点击右下角,选择解释器设置(有的同学可能无,因为本来就没有配置解释器,各电脑情况不同)
点击全部显示
PS:这里可以看到默认解释器设置为python3.8,在我们下载anaconda时就下载好了
点击添加
选择conda环境,现有环境,然后配置解释器
目录为:Anaconda3中的envs,新建的环境名字,这里是ikkks和zyh
选择python.exe,确定(每个新建的环境都需要按照这个步骤添加)
添加完毕后如图,注意左边的图标与下图相同
现在在不同任务下选择不同解释器应用确定即可
在我的上一篇博文中提到了很多这篇的内容,大家可以相互对照一下。
建议大家管理环境在
cmd中进行
对当前环境进行管理建议大家在终端中进行
PS:切换后需要重新启动终端(上方叉掉后重新点击终端即可)
Pycharm功能强大,还可以添加外置工具,大家可以多多了解
比如我这里安装了QT的相关工具
教程到此结束,大家一定要注意管理好自己的环境。感谢大家对上一篇blog的支持!
评论区网盘连接包括了Anaconda、Pycharm、Bandzip压缩包安装软件和Crack
建议大家不管安装什么软件都不要安装最新版本,可以往前倒退几个版本安装,更稳定