python数据分析可视化之数据预处理

在Python数据分析可视化中,数据预处理是非常重要的一步。通过数据合并、数据清洗和数据转换,我们可以有效地准备数据,以便后续的分析和可视化。

数据预处理学习思路

数据预处理学习思路图↑

数据合并:

一般来说我们使用 Pandas库中的merge()函数:

#首先,我们要先确保你的pandas库以及安装,如果未安装需要先安装,
pip install pandas

之后,我们在使用merge函数进行数据合并操作

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False)
这个函数主要用于根据一个或多个键将两个DataFrame进行合并。how参数可以设置为’inner’(默认)、‘outer’、‘left’或’right’,分别对应于内连接、外连接、左连接和右连接。

除此之外,还可以使用concat()函数

pd.concat(objs, axis=0, join='outer', ignore_index=False)
这个函数用于沿着一个轴将多个对象堆叠在一起。常用于水平或垂直堆叠DataFrame。

join方法:

df1.join(df2, on=key, how='left')
这是DataFrame的一个方法,用于根据指定的键将另一个DataFrame与当前DataFrame进行合并。

数据合并是将多个数据集合并成一个的过程。在实际的数据分析中,我们可能会从不同的数据源获取到不同的数据,通过数据合并,我们可以将这些数据整合在一起,方便后续的分析。常见的数据合并方式包括按行合并和按列合并。

数据清洗是指对数据进行清理和处理,以去除数据中的噪音、缺失值或异常值,使数据更加规范和可靠。常见的数据清洗操作包括去除重复值、处理缺失值、处理异常值等。

数据转换是指将原始数据转换成我们需要的形式,以便后续的分析和可视化。常见的数据转换操作包括数据类型转换、数据重塑、数据归一化等。

接下来到我们的数据清洗操作

  1. 处理缺失值

    • 删除含有缺失值的行或列:df.dropna()。这个函数可以删除任何含有缺失值的行或列,可以通过设置how参数(‘any’或’all’)来决定是删除含有任何缺失值的行或列,还是删除所有值都为缺失的行或列。
    • 填充缺失值:使用平均值、中位数、众数等进行填充,如df.fillna(df.mean())。这里使用了mean()函数计算平均值,也可以使用median()或mode()函数分别计算中位数和众数。
      1. 异常值处理
    • 使用统计方法(如Z-score或IQR)识别异常值,并选择删除、替换或修正。例如,可以使用z_scores = (df - df.mean()) / df.std()计算Z-score,然后设定一个阈值(如3),将绝对值大于该阈值的值视为异常值。
    • 可视化检测异常值,例如使用箱线图。箱线图可以清晰地展示数据的四分位数和异常值。
  2. 数据类型转换

    • 将字符串数据转换为数值类型:pd.to_numeric(df['column'], errors='coerce')。这个函数会尝试将指定列的数据转换为数值类型,如果无法转换,则将其设置为NaN。通过设置errors参数,可以控制遇到无法转换的值时的行为。
    • 将日期字符串转换为日期格式:pd.to_datetime(df['date_column'])。这个函数会尝试将指定列的字符串数据转换为日期格式。
  3. 去除重复值

    • 使用 df.duplicated() 检查重复值,返回一个布尔型Series,表示每一行是否为重复行。然后使用 df.drop_duplicates() 删除重复行。
  4. 数据规范化/标准化

    • 对数据进行缩放,如最小-最大缩放(MinMaxScaler)、Z-score标准化(StandardScaler)等。这些操作可以帮助数据满足某些算法的假设(如方差齐性、均值为0等)。
  5. 字符串操作

    • 清理文本数据:可以使用Python的内置字符串方法(如strip()replace()等)或者正则表达式进行清理,例如去除标点符号、空格、大小写转换等。
    • 提取或替换子字符串:可以使用Python的切片、str.extract()str.replace()等方法进行操作。
  6. 数据合并/融合

    • 合并多个数据集:使用 pd.merge()pd.concat()pd.merge()可以根据两个数据集中的共同列进行合并,而pd.concat()则是直接将数据集在行或列方向上进行堆叠。

敲重点:

  • 理解数据是关键:在开始清洗数据之前,需要对数据的来源、收集方式、含义、潜在问题等有深入的理解。这有助于我们制定合适的数据清洗策略和后续分析计划。

  • 逐步迭代过程:数据清洗往往不是一次性的过程,需要反复检查和调整清洗策略。在清洗过程中可能会发现新的问题或需要进一步处理的地方。

  • 可视化辅助理解:通过绘制各种图表(如直方图、散点图、箱线图等)可以帮助我们更好地理解数据的分布、关联性和异常情况。这也有助于我们评估清洗效果和决策下一步的操作。

  • 代码可复用性:编写函数或模块来封装数据清洗步骤,可以提高代码的可读性和复用性。这样在处理类似的数据集时,只需要调用相应的函数即可,避免重复编写相同的代码。

  • 文档和注释:记录数据清洗的过程和决策,包括使用的清洗方法、参数设置、结果验证等,对于未来回顾和解释结果非常有帮助。同时,良好的注释可以使代码更容易被他人理解和维护。

  • 质量优于数量:花时间在数据清洗上通常能提高后续分析和可视化的质量和准确性。一个干净、完整、一致的数据集是进行有效分析的基础。

  • 持续学习和更新知识:数据清洗的方法和工具在不断发展中,保持学习和更新知识的习惯能提升数据清洗的效率和效果。可以通过阅读相关书籍、文章、博客、参加研讨会等方式获取最新的知识和技巧。

在Python的数据分析和可视化过程中,数据转换是非常重要的一环。以下是一些常用的数据转换方法:

  1. Pandas库

    • 选择和过滤数据:Pandas提供了多种选择和过滤数据的方法。.loc.iloc是最常用的两种,.loc基于标签进行选择,而.iloc基于位置进行选择。.ix则是两者结合的用法,但在新版本的Pandas中已被弃用。

      示例:

      df.loc[:, 'column_name']  # 选择所有行的'column_name'列
      df.iloc[0:3, 1:3]  # 选择前3行的第2列到第3列
      
      • 重塑数据.stack().unstack()用于将数据从宽格式转换为长格式或反之。.melt()函数则可以将宽格式的数据转化为长格式。

      示例:

      df.stack()  # 将宽格式数据转化为长格式
      df.unstack()  # 将长格式数据转化为宽格式
      df.melt(id_vars='id_column', value_vars=['var1', 'var2'])  # 将宽格式数据转化为长格式
      
    • 数据清洗:处理缺失值和重复值是数据预处理的重要步骤。.fillna()函数用于填充缺失值,可以使用特定值、前一个或后一个非缺失值、平均值等进行填充。.dropna()函数则直接删除含有缺失值的行或列。.duplicated().drop_duplicates()用于查找和删除重复的行。

    示例:

    df.fillna(value=0)  # 使用0填充缺失值
    df.dropna()  # 删除含有缺失值的行
    df.drop_duplicates()  # 删除重复的行
    
    • 数据类型转换.astype()函数用于转换数据类型,如将字符串转换为数字,或将分类变量转换为类别型数据。

      示例:

      df['column_name'].astype(int)  # 将'column_name'列转换为整数类型
      
  2. NumPy库

    • 数学运算:NumPy提供了丰富的数学运算功能,包括基本的加减乘除、指数、对数、平方根等操作,以及矩阵和数组的运算。

      示例:

      import numpy as np
      
      a = np.array([1, 2, 3])
      b = np.array([4, 5, 6])
      
      np.add(a, b)  # [5, 7, 9]
      np.exp(a)  # [2.71828183e+00, 7.38905610e+00, 2.00855369e+01]
      np.log(a)  # [0.         , 0.69314718, 1.09861229]
      np.sqrt(a)  # [1.        , 1.41421356, 1.73205081]
      
    • 统计函数:NumPy提供了许多统计函数,如.mean().median().std().sum()等,用于计算描述性统计量。

      示例:

      a.mean()  # 2.0
      a.median()  # 2.0
      a.std()  # 1.0
      a.sum()  # 6
      
    • 矩阵运算:NumPy支持各种矩阵和数组运算,如转置、矩阵乘法等。

      示例:

      a.T  # 转置
      np.dot(a, b)  # 矩阵乘法
      
  3. Scikit-learn库

    • 特征缩放:特征缩放是预处理的重要步骤,可以提高模型的性能和稳定性。StandardScalerMinMaxScaler是常用的两种缩放方法,分别用于标准化和归一化。

      示例:

      from sklearn.preprocessing import StandardScaler, MinMaxScaler
      
      scaler = StandardScaler()
      scaled_data = scaler.fit_transform(data)
      
      scaler = MinMaxScaler()
      scaled_data = scaler.fit_transform(data)
      
  • 特征选择:通过SelectKBestRFE(递归特征消除)等方法可以选择最重要的特征,减少模型的复杂性和过拟合风险。

    示例:

    from sklearn.feature_selection import SelectKBest, chi2
    
    selector = SelectKBest(chi2, k=5)
    selected_features = selector.fit_transform(X, y)
    
    from sklearn.feature_selection import RFE
    from sklearn.linear_model import LogisticRegression
    
    estimator = LogisticRegression()
    selector = RFE(estimator, n_features_to_select=5)
    selected_features = selector.fit_transform(X, y)
    
    • 特征工程:创建新的特征或者转换现有的特征可以提高模型的性能。这可能包括编码分类变量、提取日期特征、计算交互项等。

最后我们来总结一下:

  1. 理解数据:在开始分析和可视化之前,充分理解你的数据是非常重要的。这包括了解数据的结构、变量的含义、数据的质量(如是否存在缺失值或异常值)、数据分布、相关性等。

  2. 实践出真知:理论知识固然重要,但只有通过实际操作才能真正掌握数据分析和可视化的技巧。不断练习和实验可以帮助你更好地理解和应用各种方法,同时也能发现并解决实际问题。

  3. 选择合适的工具:Python提供了许多库用于数据分析和可视化,如Pandas、NumPy、Matplotlib、Seaborn、Scikit-learn等。根据你的具体需求选择最合适的工具可以使工作更有效率。

  4. 可视化的重要性:良好的可视化不仅可以帮助你更好地理解数据,也可以有效地传达你的发现给他人。因此,花时间学习和实践如何创建有效的可视化是非常值得的,包括选择合适的图表类型、颜色、标签、标题等。

  5. 持续学习:数据分析和可视化是一个不断发展和变化的领域,新的方法和技术不断出现。保持学习和更新知识的习惯可以帮助你保持竞争力,例如关注相关的博客、书籍、在线课程和社区。

  6. 问题导向:在进行数据分析时,始终明确你的目标和问题是什么。这将帮助你专注于最重要的任务,并确保你的分析和可视化能够提供有价值的见解。同时,也要注意避免过度解读数据和假设检验的重要性。

  • 22
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Python数据分析可视化爬取数据期末作业可以有多个步骤。首先,需要使用Python编写网络爬虫代码,从网站上获取需要分析和可视化数据。这些数据可以是结构化的,例如表格或数据库中的数据,也可以是非结构化的,例如网页文本或图片等。 在爬取数据之后,接下来可以使用Python中的数据分析库,例如Pandas和NumPy,对爬取到的数据进行预处理和清洗。可以去掉重复的数据处理缺失值和异常值,并根据需要进行数据转换和整理,以方便后续的分析和可视化操作。 在数据预处理和清洗之后,可以使用Python可视化库,例如Matplotlib和Seaborn,对数据进行可视化分析。可以根据数据的类型和需求选择合适的可视化方式,例如柱状图、饼图、散点图、线图等。通过可视化分析,可以更加直观地展示数据的特征、趋势和关系,帮助提炼出有用的信息和洞察。 最后,可以将数据分析可视化的结果保存为图片或交互式的图表,以方便展示和分享。可以将分析结果制作成报告、演示文稿或网页等形式,呈现给其他人或相关学术机构。 总之,Python数据分析可视化爬取数据期末作业需要使用Python的网络爬虫技术进行数据获取,使用数据分析库进行清洗和预处理,最后使用可视化库进行数据分析和展示,并将结果呈现出来。这样可以对数据进行深入分析,挖掘其中的规律和趋势,为后续决策提供参考。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值