[Prob] Poisson

本文介绍了泊松分布的概念,用于描述在固定时间内罕见事件的数量,如电子邮件、巧克力碎片和地震。文章讨论了泊松分布的λ参数、应用实例和泊松范式的近似方法,以及在处理独立或弱相关事件总和时的误差控制。同时,通过球放入盒子的问题展示了泊松分布在复杂问题近似中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

泊松分布是一种统计分布,它适用于描述在固定时间或空间区间内发生的稀有事件的数量。例如,一个小时内你收到的电子邮件数量,或者一块巧克力饼干中的巧克力碎片数量。泊松分布的一个关键参数是λ(希腊字母lambda),它代表这些稀有事件发生的平均率。在这个上下文中,“平均率”是指在特定时间或空间区间内事件发生的平均次数。

在泊松分布中,虽然一个特定的成功(比如收到一封电子邮件或一个巧克力碎片)的概率很小,但是由于尝试的次数很多(比如一个小时有很多毫秒,或者一块饼干可以切成很多小块),所以总体上看,我们可以预期会有一定数量的成功事件。

这个段落中的例子说明了泊松分布如何应用于实际问题:

  • 电子邮件的例子:一小时内可能有很多人发邮件给你,但任何一个特定的人在那一小时内发邮件的可能性是小的。如果你把一个小时分成360万个毫秒,任何一个特定毫秒内你收到一封邮件的可能性都是很小的。
  • 巧克力饼干的例子:如果你把一块巧克力饼干切成很多小方块,每一个小方块包含一个巧克力碎片的概率是小的,但是因为小方块的总数很多,所以整块饼干中的巧克力碎片数可以用泊松分布来描述。
  • 地震的例子:在世界的某个地区,一年内发生地震的概率是小的,但考虑到一年中可能发生地震的时间和地点很多,所以我们可以用泊松分布来近似描述一年中地震发生的次数。

这些例子都展示了泊松分布的一个共同特征:在很多小概率事件中,总会有一些会实现。这些例子中的λ值分别是20(每小时的电子邮件数量)、10(每块饼干的巧克力碎片数量)和2(每年的地震次数)。

 

如何使用泊松分布来近似一系列独立或弱相关事件的总和。文中提到了一个泊松分布的近似方法,称为泊松范式(Poisson paradigm)。让我们有\( A_1, A_2, ..., A_n \)为事件,每个事件发生的概率为\( p_j = P(A_j) \)。这里假设\( n \)很大而\( p_j \)很小,并且事件\( A_j \)要么是独立的,要么是弱相关的。

设\( X \)为所有\( n \)个事件发生的总次数,可以表示为:

\[ X = \sum_{j=1}^{n} I(A_j) \]

其中\( I(A_j) \)是指示函数,如果事件\( A_j \)发生则为1,否则为0。那么\( X \)的分布可以近似为一个参数为\( \lambda \)的泊松分布,其中\( \lambda \)等于所有事件发生概率之和:

\[ \lambda = \sum_{j=1}^{n} p_j \]

但是,证明这种近似的准确性可能相当困难,因为需要先给出弱相关的精确定义以及好的近似定义。一个重要的定理是,如果事件\( A_j \)是独立的,那么当\( N \)服从参数为\( \lambda \)的泊松分布,且\( B \)是非负整数集合时,下面的不等式成立:

\[ |P(X \in B) - P(N \in B)| \leq \min \left(1, \frac{1}{\lambda}\right) \sum_{j=1}^{n} p_j^2 \]

这给出了使用泊松近似可能引入的最大误差的上界。它也进一步精确了\( p_j \)应该多小,我们希望\(\sum_{j=1}^{n} p_j^2 \)非常小,至少相对于\( \lambda \)来说要小。这个结果是通过一个称为Stein-Chen方法的高级技巧得出的。简而言之,这部分内容在说明,如果我们有一系列独立或弱相关的小概率事件,那么这些事件发生总数的分布可以用一个泊松分布来近似描述,这种近似在特定条件下误差是有限制的。

这段文字进一步解释了泊松范式,也称为稀有事件法则。稀有的含义在这里指的是单个事件发生的概率\( p_j \)很小,而不是指总的发生率\( \lambda \)很小。例如,在电子邮件的例子中,来自特定个人的邮件概率是小的,但由于可能发邮件的人数很多,因此一个小时内收到至少一封邮件的总概率并不一定很小。

在泊松分布的上下文中,事件发生的实际数量不一定非得严格符合泊松分布,因为泊松随机变量没有上界,而实际情况中的事件(如饼干中的巧克力碎片数量)有一个自然的上限。尽管如此,泊松分布通常能提供一个很好的近似值。

泊松范式的条件相对宽松:\( n \)次试验可以有不同的成功概率,试验之间不需要完全独立,只是不应该高度相关。这使得泊松范式可以应用于多种情况。正因为如此,泊松模型或者说以泊松模型为起点,对于那些值为非负整数的数据(在统计学中称为计数数据)是非常受欢迎的。

 

 

这个图片里是一个关于放球进盒子的统计问题,它是一个经典的概率问题,称为占用问题(occupancy problems),在计算机科学中有广泛的应用。

问题描述有\( k \)个可区分的球和\( n \)个不同的盒子,球随机地放进盒子里,所有\( n^k \)种可能性都是等可能的。以下是对问题各部分的汉语解释:

**(a)** 要找到空盒子期望数量的完全简化形式。令 \( I_j \) 为第 \( j \) 个盒子为空的指示随机变量。那么,第 \( j \) 个盒子为空的概率 \( E(I_j) \) 等于 \( (1 - \frac{1}{n})^k \)。由线性性质,所有盒子空的期望数量 \( E(\sum_{j=1}^{n} I_j) \) 等于 \( n \times (1 - \frac{1}{n})^k \)。

**(b)** 要找到至少有一个空盒子的概率。用包含-排除原理,可以得到至少一个空盒子的概率的表达式。对于 \( k < n \) 的情况,表达式变得更加复杂,需要计算所有可能包含至少一个空盒子的情况的概率总和。

**(c)** 在这个特定的例子中,\( n = 1000 \),\( k = 5806 \),所以空盒子的期望数量是3。基于泊松分布的近似,可以找到至少一个空盒子的概率的近似值。这里,\( X \) 表示空盒子的数量,它近似服从参数为3的泊松分布,因为有很多盒子而每个盒子为空的概率很小。特定盒子为空的概率 \( (1 - \frac{1}{n})^k = \frac{1}{n} \)。所以,期望值 \( E(X) \) 大约为0.003。根据泊松分布,我们可以计算 \( P(X \geq 1) \) 大约为 \( 1 - e^{-3}\) 近似为 \( 1 - \frac{1}{20} = 0.95 \)。

这个问题的解决方案表明,泊松分布是一个强大的工具,可以用来近似计算一些复杂问题的解,例如生日问题,以及其他可能很难精确解决的变体问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值