【制造业&叉车】叉车与工人检测系统源码&数据集全套:改进yolo11-EMSCP

改进yolo11-MLCA等200+全套创新点大全:叉车与工人检测系统源码&数据集全套

1.图片效果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

项目来源 人工智能促进会 2024.10.24

注意:由于项目一直在更新迭代,上面“1.图片效果展示”和“2.视频效果展示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)

(1)适配了YOLOV11的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。

(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。

(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。

(4)支持Web前端系统中的标题、背景图等自定义修改。

另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。

2.视频效果展示

2.1 视频效果展示

3.背景

研究背景与意义

随着工业自动化和智能化的不断发展,叉车作为现代仓储和物流领域的重要设备,其安全性和效率性日益受到重视。叉车与工人之间的相互作用不仅影响工作效率,更关乎工人的人身安全。因此,开发一套高效的叉车与工人检测系统,能够实时监测叉车与工人之间的距离和状态,显得尤为重要。基于深度学习的目标检测技术,尤其是YOLO(You Only Look Once)系列模型,因其在实时性和准确性方面的优势,成为了该领域研究的热点。

本研究旨在基于改进的YOLOv11模型,构建一个高效的叉车与工人检测系统。我们使用的数据集包含2000张图像,涵盖了6个类别,其中包括叉车和工人两个主要类别。这一数据集的构建不仅为模型的训练提供了丰富的样本,还为系统的实际应用奠定了基础。通过对数据集的分析与处理,我们能够提取出叉车与工人在不同场景下的特征,从而提高模型的检测精度和鲁棒性。

改进YOLOv11模型的引入,旨在提升检测速度和准确率,使得系统能够在复杂的工作环境中实时响应,减少误报和漏报的情况。此外,结合图像处理技术和深度学习算法,我们期望能够实现对叉车与工人之间的智能监测与预警,进而降低工伤事故的发生率,提高工作场所的安全性。

综上所述,本研究不仅具有重要的理论意义,也具备广泛的实际应用价值。通过实现叉车与工人的智能检测,我们能够为现代工业安全管理提供新的解决方案,推动智能物流和仓储系统的发展。

4.数据集信息展示

4.1 本项目数据集详细数据(类别数&类别名)

nc: 2
names: [‘forklift’, ‘person’]

该项目为【目标检测】数据集,请在【训练教程和Web端加载模型教程(第三步)】这一步的时候按照【目标检测】部分的教程来训练

4.2 本项目数据集信息介绍

本项目数据集信息介绍

在本项目中,我们使用了名为“car11”的数据集,以支持改进YOLOv11模型在叉车与工人检测系统中的应用。该数据集专门设计用于识别和区分两类目标:叉车(forklift)和工人(person)。数据集的类别数量为2,涵盖了叉车和工人这两个在工业环境中常见且重要的对象。这一选择不仅反映了实际工作场景中的需求,也为模型的训练提供了明确的目标,使其能够在复杂的工作环境中有效地进行物体检测。

“car11”数据集的构建过程注重多样性和代表性,确保所收集的图像涵盖了不同的工作场景、光照条件和视角变化。这种多样性对于提高模型的泛化能力至关重要,因为在实际应用中,叉车和工人可能会在各种环境中出现。数据集中包含的图像经过精心标注,确保每个目标的边界框准确无误,从而为模型提供高质量的训练数据。

通过使用“car11”数据集,我们的目标是提升YOLOv11在叉车与工人检测任务中的性能,使其能够在实时监控和安全管理中发挥更大的作用。数据集的选择和设计将直接影响模型的学习效果和最终的检测精度,因此我们对数据集的质量和多样性给予了高度重视。最终,我们期望通过这一数据集的训练,构建出一个高效、准确的检测系统,为工业安全和效率的提升贡献力量。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 所需软件PyCharm和Anaconda安装教程(第一步)

5.2 安装Python虚拟环境创建和依赖库安装视频教程(第二步)

6.改进YOLOv11训练教程和Web_UI前端加载模型教程(零基础手把手教学)

6.1 改进YOLOv11训练教程和Web_UI前端加载模型教程(第三步)

按照上面的训练视频教程链接加载项目提供的数据集,运行train.py即可开始训练

 Epoch   gpu_mem       box       obj       cls    labels  img_size
 1/200     20.8G   0.01576   0.01955  0.007536        22      1280: 100%|██████████| 849/849 [14:42<00:00,  1.04s/it]
           Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100%|██████████| 213/213 [01:14<00:00,  2.87it/s]
             all       3395      17314      0.994      0.957      0.0957      0.0843

 Epoch   gpu_mem       box       obj       cls    labels  img_size
 2/200     20.8G   0.01578   0.01923  0.007006        22      1280: 100%|██████████| 849/849 [14:44<00:00,  1.04s/it]
           Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100%|██████████| 213/213 [01:12<00:00,  2.95it/s]
             all       3395      17314      0.996      0.956      0.0957      0.0845

 Epoch   gpu_mem       box       obj       cls    labels  img_size
 3/200     20.8G   0.01561    0.0191  0.006895        27      1280: 100%|██████████| 849/849 [10:56<00:00,  1.29it/s]
           Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100%|███████   | 187/213 [00:52<00:00,  4.04it/s]
             all       3395      17314      0.996      0.957      0.0957      0.0845
项目数据集下载链接

7.原始YOLOv11算法讲解

YOLO11采用改进的骨干和颈部架构,增强了特征提取能力,提高了物体检测的精确度和复杂任务的表现。YOLO11引入精炼的架构设计和优化的训练流程,实现更快的处理速度,同时保持精度和性能之间的最佳平衡。通过模型设计的进步,YOLO11m在COCO数据集上实现了更高的均值平均精度(mAP),同时使用比YOLOv8m少22%的参数,使其在不妥协准确性的情况下更加计算高效。YOLO11可以无缝部署在各种环境中,包括边缘设备、云平台以及支持NVIDIA
GPU的系统,确保最大灵活性。无论是物体检测、实例分割、图像分类、姿态估计,还是定向物体检测(OBB),YOLO11都旨在应对多样的计算机视觉挑战。

921ce05452174acfb8c1cefc1b02cd7f.jpeg

Ultralytics YOLO11相比于之前版本的主要改进有哪些?

Ultralytics YOLO11在其前身基础上引入了几项重要进步。主要改进包括:

  1. 增强的特征提取 :YOLO11采用改进的骨干和颈部架构,增强了特征提取能力,提高了物体检测的精确度。
  2. 优化的效率和速度 :精炼的架构设计和优化的训练流程实现了更快的处理速度,同时保持了准确性和性能之间的平衡。
  3. 更高的准确性与更少的参数 :YOLO11m在COCO数据集上实现了更高的均值平均精度(mAP),同时使用比YOLOv8m少22%的参数,使其在不妥协准确性的情况下更加计算高效。
  4. 环境适应性强 :YOLO11可以在多种环境中部署,包括边缘设备、云平台以及支持NVIDIA GPU的系统。
  5. 支持广泛的任务 :YOLO11支持多种计算机视觉任务,如物体检测、实例分割、图像分类、姿态估计和定向物体检测(OBB)。

我们先来看一下其网络结构有什么变化,可以看出,相比较于YOLOv8模型,其将CF2模块改成C3K2,同时在SPPF模块后面添加了一个C2PSA模块,且将YOLOv10的head思想引入到YOLO11的head中,使用深度可分离的方法,减少冗余计算,提高效率。下面我们来详细看一下这两个模块的结构是怎么构成的,以及它们为什么要这样设计

C3K2的网络结构

从下面图中我们可以看到,C3K2模块其实就是C2F模块转变出来的,它代码中有一个设置,就是当c3k这个参数为FALSE的时候,C3K2模块就是C2F模块,也就是说它的Bottleneck是普通的Bottleneck;反之当它为true的时候,将Bottleneck模块替换成C3模块。

a5fac4fcfe90452487fee5d02fecb75d.png

C2PSA的网络结构

C2PSA是对 C2f 模块的扩展,它结合了PSA(Pointwise Spatial
Attention)块,用于增强特征提取和注意力机制。通过在标准 C2f 模块中引入 PSA
块,C2PSA实现了更强大的注意力机制,从而提高了模型对重要特征的捕捉能力。

C2f 模块回顾:

**** C2f模块是一个更快的 CSP(Cross Stage Partial)瓶颈实现,它通过两个卷积层和多个 Bottleneck
块进行特征提取。相比传统的 CSPNet,C2f 优化了瓶颈层的结构,使得计算速度更快。在 C2f中,cv1 是第一个 1x1
卷积,用于减少通道数;cv2 是另一个 1x1 卷积,用于恢复输出通道数。而 n 是一个包含 Bottleneck 块的数量,用于提取特征。

C2PSA 模块的增强

C2PSA 扩展了 C2f,通过引入PSA( Position-Sensitive Attention)
,旨在通过多头注意力机制和前馈神经网络来增强特征提取能力。它可以选择性地添加残差结构(shortcut)以优化梯度传播和网络训练效果。同时,使用FFN
可以将输入特征映射到更高维的空间,捕获输入特征的复杂非线性关系,允许模型学习更丰富的特征表示。

head部分

YOLO11在head部分的cls分支上使用深度可分离卷积 ,具体代码如下,cv2边界框回归分支,cv3分类分支。

 self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
        )
        self.cv3 = nn.ModuleList(
            nn.Sequential(
                nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)),
                nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),
                nn.Conv2d(c3, self.nc, 1),
            )
            for x in ch
        )


8.200+种全套改进YOLOV11创新点原理讲解

8.1 200+种全套改进YOLOV11创新点原理讲解大全

由于篇幅限制,每个创新点的具体原理讲解就不全部展开,具体见下列网址中的改进模块对应项目的技术原理博客网址【Blog】(创新点均为模块化搭建,原理适配YOLOv5~YOLOv11等各种版本)

改进模块技术原理博客【Blog】网址链接

9.png

8.2 精选部分改进YOLOV11创新点原理讲解
这里节选部分改进创新点展开原理讲解(完整的改进原理见上图和改进模块技术原理博客链接【如果此小节的图加载失败可以通过CSDN或者Github搜索该博客的标题访问原始博客,原始博客图片显示正常】

感受野注意力卷积(RFAConv)

标准卷积操作回顾

标准的卷积操作是构造卷积神经网络的基本构件。它利用具有共享参数的滑动窗口提取特征信息,克服了全连通层构造神经网络固有的参数多、计算开销大的问题。设 X R∈C×H×W
表示输入特征图,其中C、H、W分别表示特征图的通道数、高度、宽度。为了清楚地演示卷积核的特征提取过程,我们使用 C = 1 的例子。从每个接受域滑块中提取特征信息的卷积运算可以表示为:
在这里插入图片描述

这里,Fi 表示计算后每个卷积滑块得到的值,Xi 表示每个滑块内对应位置的像素值,K表示卷积核,S表示卷积核中的参数个数,N表示接收域滑块的总数。可以看出,每个滑块内相同位置的 feature共享相同的参数Ki。因此,标准的卷积运算并不能捕捉到不同位置所带来的信息差异,这最终在一定程度上限制了卷积神经网络的性能。

空间注意力回顾

目前,空间注意机制是利用学习得到的注意图来突出每个特征的重要性。与前一节类似,这里以 C=1为例。突出关键特征的空间注意机制可以简单表述为:这里,Fi 表示加权运算后得到的值。xi 和Ai 表示输入特征图和学习到的注意图在不同位置的值,N为输入特征图的高和宽的乘积,表示像素值的总数。
在这里插入图片描述

空间注意与标准卷积运算

将注意力机制整合到卷积神经网络中,可以提高卷积神经网络的性能。通过对标准卷积运算和现有空间注意机制的研究,我们认为空间注意机制有效地克服了卷积神经网络固有的参数共享的局限性。目前卷积神经网络中最常用的核大小是 1 × 1和3 × 3。在引入空间注意机制后,提取特征的卷积操作可以是 1 × 1或3 × 3卷积操作。为了直观地展示这个过程,在 1 × 1卷积运算的前面插入了空间注意机制。通过注意图对输入特征图(Re-weight“×”)进行加权运算,最后通过 1 × 1卷积运算提取接收域的滑块特征信息。整个过程可以简单地表示如下:
在这里插入图片描述

这里卷积核K仅代表一个参数值。如果取A i× ki 的值作为一种新的卷积核参数,有趣的是它解决了 1×1卷积运算提取特征时的参数共享问题。然而,关于空间注意机制的传说到此结束。当空间注意机制被插入到3×3卷积运算前面时。具体情况如下:
在这里插入图片描述

如上所述,如果取A的值 i × ki (4)式作为一种新的卷积核参数,完全解决了大规模卷积核的参数共享问题。然而,最重要的一点是,卷积核在提取每个接受域滑块的特征时,会共享一些特征。换句话说,每个接收域滑块内都有一个重叠。仔细分析后会发现A12= a21, a13 = a22, a15 = a24……,在这种情况下,每个滑动窗口共享空间注意力地图的权重。因此,空间注意机制没有考虑整个接受域的空间特征,不能有效地解决大规模卷积核的参数共享问题。因此,空间注意机制的有效性受到限制。

创新空间注意力和标准卷积操作

该博客提出解决了现有空间注意机制的局限性,为空间处理提供了一种创新的解决方案。受RFA的启发,一系列空间注意机制被开发出来,可以进一步提高卷积神经网络的性能。RFA可以看作是一个轻量级即插即用模块,RFA设计的卷积运算(RFAConv)可以代替标准卷积来提高卷积神经网络的性能。因此,我们预测空间注意机制与标准卷积运算的结合将继续发展,并在未来带来新的突破。
接受域空间特征:为了更好地理解接受域空间特征的概念,我们将提供相关的定义。接收域空间特征是专门为卷积核设计的,并根据核大小动态生成。如图1所示,以3×3卷积核为例。在图1中,“Spatial Feature”指的是原始的Feature map。“接受域空间特征”是空间特征变换后的特征图。

在这里插入图片描述

由不重叠的滑动窗口组成。当使用 3×3卷积内核提取特征时,接收域空间特征中的每个 3×3大小窗口代表一个接收域滑块。接受域注意卷积(RFAConv):针对接受域的空间特征,我们提出了接受域注意卷积(RFA)。该方法不仅强调了接收域滑块内不同特征的重要性,而且对接收域空间特征进行了优先排序。通过该方法,完全解决了卷积核参数共享的问题。接受域空间特征是根据卷积核的大小动态生成的,因此,RFA是卷积的固定组合,不能与卷积操作的帮助分离,卷积操作同时依赖于RFA来提高性能,因此我们提出了接受场注意卷积(RFAConv)。具有3×3大小的卷积核的RFAConv整体结构如图所示。
在这里插入图片描述

目前,最广泛使用的接受域特征提取方法是缓慢的。经过大量的研究,我们开发了一种快速的方法,用分组卷积来代替原来的方法。具体来说,我们利用相应大小的分组卷积来动态生成基于接受域大小的展开特征。尽管与原始的无参数方法(如PyTorch提供的nn.())相比,该方法增加了一些参数,但它的速度要快得多。注意:如前一节所述,当使用 3×3卷积内核提取特征时,接收域空间特征中的每个 3×3大小窗口表示一个接收域滑块。而利用快速分组卷积提取感受野特征后,将原始特征映射为新的特征。最近的研究表明。交互信息可以提高网络性能,如[40,41,42]所示。同样,对于RFAConv来说,通过交互接受域特征信息来学习注意图可以提高网络性能。然而,与每个接收域特征交互会导致额外的计算开销,因此为了最小化计算开销和参数的数量,我们使用AvgPool来聚合每个接收域特征的全局信息。然后,使用 1×1 组卷积操作进行信息交互。最后,我们使用softmax来强调每个特征在接受域特征中的重要性。一般情况下,RFA的计算可以表示为:
在这里插入图片描述

这里gi×i 表示一个大小为 i×i的分组卷积,k表示卷积核的大小,Norm表示归一化,X表示输入的特征图,F由注意图 a相乘得到 rf 与转换后的接受域空间特征 Frf。与CBAM和CA不同,RFA能够为每个接受域特征生成注意图。卷积神经网络的性能受到标准卷积操作的限制,因为卷积操作依赖于共享参数,对位置变化带来的信息差异不敏感。然而,RFAConv通过强调接收域滑块中不同特征的重要性,并对接收域空间特征进行优先级排序,可以完全解决这个问题。通过RFA得到的feature map是接受域空间特征,在“Adjust Shape”后没有重叠。因此,学习到的注意图将每个接受域滑块的特征信息聚合起来。换句话说,注意力地图不再共享在每个接受域滑块。这完全弥补了现有 CA和CBAM注意机制的不足。RFA为标准卷积内核提供了显著的好处。而在调整形状后,特征的高度和宽度是 k倍,需要进行 stride = k的k × k卷积运算来提取特征信息。RFA设计的卷积运算RFAConv为卷积带来了良好的增益,对标准卷积进行了创新。
此外,我们认为现有的空间注意机制应该优先考虑接受域空间特征,以提高网络性能。众所周知,基于自注意机制的网络模型[43,44,45]取得了很大的成功,因为它解决了卷积参数共享的问题,并对远程信息进行建模。然而,自注意机制也为模型引入了显著的计算开销和复杂性。我们认为,将现有的空间注意机制的注意力引导到接受场空间特征上,可以以类似于自我注意的方式解决长期信息的参数共享和建模问题。与自我关注相比,这种方法需要的参数和计算资源少得多。答案如下:(1)将以接收场空间特征为中心的空间注意机制与卷积相结合,消除了卷积参数共享的问题。(2)现有的空间注意机制已经考虑了远程信息,可以通过全局平均池或全局最大池的方式获取全局信息,其中明确考虑了远程信息。因此,我们设计了新的 CBAM和CA模型,称为RFCBAM和RFCA,它们专注于接受域空间特征。与RFA类似,使用最终的k × k stride = k 的卷积运算来提取特征信息。这两种新的卷积方法的具体结构如图 3所示,我们称这两种新的卷积操作为 RFCBAMConv和RFCAConv。与原来的CBAM相比,我们在RFCBAM中使用SE attention来代替CAM。因为这样可以减少计算开销。此外,在RFCBAM中,通道注意和空间注意不是分开执行的。相反,它们是同时加权的,使得每个通道获得的注意力地图是不同的。

在这里插入图片描述

9.系统功能展示

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10. YOLOv11核心改进源码讲解

10.1 fasternet.py

以下是对代码的核心部分进行的分析和详细注释:

import torch
import torch.nn as nn
from typing import List
from torch import Tensor

class Partial_conv3(nn.Module):
    """
    实现部分卷积的类,允许在前向传播中选择不同的计算方式。
    """
    def __init__(self, dim, n_div, forward):
        super().__init__()
        self.dim_conv3 = dim // n_div  # 部分卷积的维度
        self.dim_untouched = dim - self.dim_conv3  # 未改变的维度
        self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)  # 3x3卷积

        # 根据选择的前向传播方式初始化
        if forward == 'slicing':
            self.forward = self.forward_slicing
        elif forward == 'split_cat':
            self.forward = self.forward_split_cat
        else:
            raise NotImplementedError

    def forward_slicing(self, x: Tensor) -> Tensor:
        # 仅用于推理阶段
        x = x.clone()  # 保持原始输入不变以便后续残差连接
        x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])  # 进行部分卷积
        return x

    def forward_split_cat(self, x: Tensor) -> Tensor:
        # 用于训练和推理阶段
        x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)  # 按通道分割
        x1 = self.partial_conv3(x1)  # 对部分通道进行卷积
        x = torch.cat((x1, x2), 1)  # 合并卷积后的通道和未改变的通道
        return x


class MLPBlock(nn.Module):
    """
    MLP(多层感知机)块,包含卷积、归一化和激活函数。
    """
    def __init__(self, dim, n_div, mlp_ratio, drop_path, layer_scale_init_value, act_layer, norm_layer, pconv_fw_type):
        super().__init__()
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.drop_path = nn.Identity() if drop_path <= 0 else DropPath(drop_path)  # 随机深度
        self.n_div = n_div

        mlp_hidden_dim = int(dim * mlp_ratio)  # MLP隐藏层维度

        # 定义MLP层
        mlp_layer: List[nn.Module] = [
            nn.Conv2d(dim, mlp_hidden_dim, 1, bias=False),
            norm_layer(mlp_hidden_dim),
            act_layer(),
            nn.Conv2d(mlp_hidden_dim, dim, 1, bias=False)
        ]
        self.mlp = nn.Sequential(*mlp_layer)  # 将MLP层组合成序列

        # 空间混合
        self.spatial_mixing = Partial_conv3(dim, n_div, pconv_fw_type)

    def forward(self, x: Tensor) -> Tensor:
        shortcut = x  # 保存输入以便后续残差连接
        x = self.spatial_mixing(x)  # 进行空间混合
        x = shortcut + self.drop_path(self.mlp(x))  # 残差连接
        return x


class FasterNet(nn.Module):
    """
    FasterNet主网络结构,包含多个阶段和特征提取模块。
    """
    def __init__(self, in_chans=3, num_classes=1000, embed_dim=96, depths=(1, 2, 8, 2), mlp_ratio=2., n_div=4,
                 patch_size=4, patch_stride=4, patch_size2=2, patch_stride2=2, patch_norm=True, drop_path_rate=0.1,
                 layer_scale_init_value=0, norm_layer='BN', act_layer='RELU', pconv_fw_type='split_cat'):
        super().__init__()

        # 选择归一化和激活函数
        norm_layer = nn.BatchNorm2d if norm_layer == 'BN' else NotImplementedError
        act_layer = nn.GELU if act_layer == 'GELU' else partial(nn.ReLU, inplace=True)

        self.num_stages = len(depths)  # 网络阶段数量
        self.embed_dim = embed_dim  # 嵌入维度

        # 图像分块嵌入
        self.patch_embed = PatchEmbed(patch_size=patch_size, patch_stride=patch_stride, in_chans=in_chans,
                                       embed_dim=embed_dim, norm_layer=norm_layer if patch_norm else None)

        # 随机深度衰减规则
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]

        # 构建网络各个阶段
        stages_list = []
        for i_stage in range(self.num_stages):
            stage = BasicStage(dim=int(embed_dim * 2 ** i_stage), n_div=n_div, depth=depths[i_stage],
                               mlp_ratio=mlp_ratio, drop_path=dpr[sum(depths[:i_stage]):sum(depths[:i_stage + 1])],
                               layer_scale_init_value=layer_scale_init_value, norm_layer=norm_layer,
                               act_layer=act_layer, pconv_fw_type=pconv_fw_type)
            stages_list.append(stage)

            # 添加分块合并层
            if i_stage < self.num_stages - 1:
                stages_list.append(PatchMerging(patch_size2=patch_size2, patch_stride2=patch_stride2,
                                                 dim=int(embed_dim * 2 ** i_stage), norm_layer=norm_layer))

        self.stages = nn.Sequential(*stages_list)  # 将所有阶段组合成序列

    def forward(self, x: Tensor) -> Tensor:
        # 输出四个阶段的特征用于密集预测
        x = self.patch_embed(x)  # 进行分块嵌入
        outs = []
        for idx, stage in enumerate(self.stages):
            x = stage(x)  # 通过每个阶段
            if idx in self.out_indices:  # 如果是输出阶段
                norm_layer = getattr(self, f'norm{idx}')  # 获取归一化层
                x_out = norm_layer(x)  # 进行归一化
                outs.append(x_out)  # 保存输出
        return outs

代码核心部分分析

  1. Partial_conv3: 实现了部分卷积的功能,允许在推理和训练阶段使用不同的前向传播方式。
  2. MLPBlock: 这是一个多层感知机块,包含卷积、归一化和激活函数,并实现了残差连接。
  3. FasterNet: 这是整个网络的核心类,负责构建网络的不同阶段,并实现图像的分块嵌入。

总结

以上代码定义了一个基于部分卷积和多层感知机的神经网络结构FasterNet,适用于图像处理任务。通过模块化设计,代码易于扩展和维护。

这个文件 fasternet.py 实现了一个名为 FasterNet 的深度学习模型,主要用于图像处理任务。该模型由多个模块组成,包括卷积层、MLP(多层感知机)块、嵌入层和合并层等。文件中包含了一些基本的类和函数,下面是对这些内容的逐步分析。

首先,文件导入了一些必要的库,包括 PyTorch、YAML 以及一些用于构建神经网络的模块。接着,定义了几个主要的类。

Partial_conv3 类实现了一个部分卷积层,它根据不同的前向传播方式(切片或拼接)来处理输入数据。在推理时,使用切片方式,仅对输入的部分通道进行卷积操作;而在训练时,使用拼接方式,将输入分为两部分,分别进行处理。

MLPBlock 类实现了一个 MLP 块,其中包含两个卷积层和一个归一化层,支持可选的 DropPath 和层缩放。这个模块的前向传播方法将输入数据通过部分卷积层处理后,再通过 MLP 进行变换,并加上输入的快捷连接。

BasicStage 类则是由多个 MLPBlock 组成的一个阶段。它通过将多个 MLP 块串联在一起,形成一个深度网络的基础结构。

PatchEmbed 类用于将输入图像分割成小块(patch),并通过卷积层进行嵌入。这个过程将原始图像的空间信息转化为特征表示。

PatchMerging 类则用于在不同阶段之间合并特征图,通过卷积层减少特征图的维度。

FasterNet 类是整个模型的核心,负责将上述各个模块组合在一起。它接受多个参数,如输入通道数、类别数、嵌入维度、各个阶段的深度等。模型的构建过程包括创建嵌入层、多个基本阶段以及合并层。模型的前向传播方法将输入数据通过嵌入层和各个阶段进行处理,并在指定的输出层进行归一化。

此外,文件中还定义了一些函数用于加载模型的权重。update_weight 函数用于更新模型的权重字典,确保只加载匹配的权重。fasternet_t0fasternet_t1fasternet_t2fasternet_sfasternet_mfasternet_l 函数则分别用于构建不同版本的 FasterNet 模型,并支持从配置文件中读取参数和加载预训练权重。

最后,在 __main__ 部分,代码示例展示了如何使用 fasternet_t0 函数创建模型实例,并打印模型的通道信息和输出尺寸。这部分代码主要用于测试和验证模型的构建是否正确。

总体来说,这个文件实现了一个灵活且高效的深度学习模型,适用于图像处理任务,且提供了多种配置和预训练权重的加载方式。

10.2 TransNext.py

以下是经过简化并添加详细中文注释的核心代码部分:

try:
    # 尝试导入swattention模块和TransNext_cuda中的所有内容
    import swattention
    from ultralytics.nn.backbone.TransNeXt.TransNext_cuda import *
except ImportError as e:
    # 如果导入失败(例如模块不存在),则导入TransNext_native中的所有内容
    from ultralytics.nn.backbone.TransNeXt.TransNext_native import *
    pass  # 继续执行,不做任何处理

代码注释说明:

  1. try-except 结构:使用 try 块来尝试执行可能会引发异常的代码。如果在 try 块中发生 ImportError(导入错误),则会跳转到 except 块。

  2. 导入模块

    • import swattention:尝试导入 swattention 模块,这个模块可能是用于某种特定的注意力机制。
    • from ultralytics.nn.backbone.TransNeXt.TransNext_cuda import *:尝试从 TransNext_cuda 模块中导入所有内容,通常这是一个针对CUDA优化的实现,适合在GPU上运行。
  3. 处理导入错误

    • except ImportError as e:捕获导入错误,并将错误信息存储在变量 e 中(虽然在这里并没有使用这个变量)。
    • from ultralytics.nn.backbone.TransNeXt.TransNext_native import *:如果 TransNext_cuda 导入失败,则导入 TransNext_native 模块,通常这是一个不依赖于CUDA的实现,适合在CPU上运行。
  4. pass 语句:在 except 块中使用 pass,表示捕获到异常后不执行任何操作,继续执行后续代码。

这个程序文件名为 TransNext.py,其主要功能是导入与 TransNeXt 相关的模块。代码的结构使用了 try...except 语句,目的是为了处理可能出现的导入错误。

首先,程序尝试导入 swattention 模块以及 TransNext_cuda 中的所有内容。如果这两个模块能够成功导入,程序将继续执行后续的代码(虽然在这段代码中没有后续内容)。TransNext_cuda 可能是一个针对 CUDA 加速的实现,通常用于深度学习模型的训练和推理,以提高计算效率。

如果在导入过程中发生 ImportError(即找不到模块),程序将进入 except 块。在这个块中,程序将尝试导入 TransNext_native 模块,这通常是一个不依赖于 CUDA 的实现,可能适用于没有 GPU 的环境。这里的 pass 语句表示在捕获到异常后不执行任何操作,程序将继续运行。

总体来看,这段代码的设计使得程序能够在不同的环境中灵活地选择合适的模块进行导入,从而提高了代码的兼容性和可移植性。

10.3 utils.py

以下是代码中最核心的部分,并附上详细的中文注释:

import torch
import torch.nn.functional as F

def multi_scale_deformable_attn_pytorch(
    value: torch.Tensor,
    value_spatial_shapes: torch.Tensor,
    sampling_locations: torch.Tensor,
    attention_weights: torch.Tensor,
) -> torch.Tensor:
    """
    多尺度可变形注意力机制。

    参数:
        value: 输入特征图,形状为 (bs, C, num_heads, embed_dims)
        value_spatial_shapes: 特征图的空间形状,形状为 (num_levels, 2)
        sampling_locations: 采样位置,形状为 (bs, num_queries, num_heads, num_levels, num_points, 2)
        attention_weights: 注意力权重,形状为 (bs, num_heads, num_queries, num_levels, num_points)

    返回:
        output: 输出特征图,形状为 (bs, num_queries, num_heads * embed_dims)
    """
    bs, _, num_heads, embed_dims = value.shape  # 获取输入特征图的维度
    _, num_queries, _, num_levels, num_points, _ = sampling_locations.shape  # 获取采样位置的维度

    # 将输入特征图按照空间形状拆分成多个特征图
    value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
    
    # 将采样位置进行归一化处理
    sampling_grids = 2 * sampling_locations - 1
    sampling_value_list = []  # 用于存储每个层级的采样值

    for level, (H_, W_) in enumerate(value_spatial_shapes):
        # 将特征图重塑为 (bs*num_heads, embed_dims, H_, W_)
        value_l_ = value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)
        
        # 处理当前层级的采样位置
        sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
        
        # 使用双线性插值从特征图中采样
        sampling_value_l_ = F.grid_sample(
            value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
        )
        sampling_value_list.append(sampling_value_l_)  # 将采样值添加到列表中

    # 将注意力权重进行重塑
    attention_weights = attention_weights.transpose(1, 2).reshape(
        bs * num_heads, 1, num_queries, num_levels * num_points
    )
    
    # 计算最终输出
    output = (
        (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)  # 加权求和
        .sum(-1)  # 在最后一个维度上求和
        .view(bs, num_heads * embed_dims, num_queries)  # 重塑输出形状
    )
    
    return output.transpose(1, 2).contiguous()  # 返回输出,调整维度顺序

代码说明:

  1. 多尺度可变形注意力机制:该函数实现了多尺度的可变形注意力机制,能够在不同的特征层级上进行特征采样和加权。
  2. 输入参数
    • value:输入特征图,包含多个头的特征。
    • value_spatial_shapes:特征图的空间形状,提供每个层级的高和宽。
    • sampling_locations:采样位置,指示在特征图上进行采样的具体位置。
    • attention_weights:注意力权重,用于加权不同层级的采样值。
  3. 输出:返回加权后的特征图,形状为 (bs, num_queries, num_heads * embed_dims),可以用于后续的处理或分类任务。

这个程序文件 utils.py 是一个用于实现一些深度学习模型的辅助工具模块,特别是与 YOLO(You Only Look Once)目标检测算法相关的功能。文件中包含了一些常用的函数和工具,主要用于模块的初始化和多尺度可变形注意力机制的实现。

首先,文件导入了一些必要的库,包括 copymathnumpytorch,后者是 PyTorch 的核心库,提供了张量操作和深度学习模型构建的功能。

文件中定义了几个函数。_get_clones(module, n) 函数用于克隆给定的 PyTorch 模块,返回一个包含 n 个克隆模块的列表。这在构建多层网络时非常有用,可以避免手动重复创建相同的层。

bias_init_with_prob(prior_prob=0.01) 函数用于根据给定的先验概率初始化卷积或全连接层的偏置值。它使用了对数几率的公式来计算偏置值,以确保模型在训练初期的输出分布符合预期。

linear_init(module) 函数用于初始化线性模块的权重和偏置。它使用均匀分布来初始化权重,确保权重的初始值在一个合理的范围内,以促进模型的训练。

inverse_sigmoid(x, eps=1e-5) 函数计算张量的反 sigmoid 函数。它对输入值进行限制,确保输入在 0 到 1 之间,并避免数值计算中的不稳定性。

最后,multi_scale_deformable_attn_pytorch 函数实现了多尺度可变形注意力机制。该函数接受多个输入,包括值张量、空间形状、采样位置和注意力权重。它首先对输入的值进行分割,然后根据采样位置生成采样网格,使用双线性插值从值张量中提取相应的特征。最后,函数根据注意力权重对采样值进行加权求和,输出最终的特征表示。

整体来看,这个模块提供了一些基础的工具函数和实现,旨在支持更复杂的深度学习模型,尤其是在目标检测和图像处理任务中。

注意:由于此博客编辑较早,上面“10.YOLOv11核心改进源码讲解”中部分代码可能会优化升级,仅供参考学习,以“11.完整训练+Web前端界面+200+种全套创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。

11.完整训练+Web前端界面+200+种全套创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/Vision-Studios/car1137

参考原始博客2: https://github.com/Qunmasj-Vision-Studio/car1137

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值