Dijkstra-单源最短路
单源最短路径问题指的是在一个有向图中,从给定的一个顶点(源点)出发,找到到达其它所有顶点的最短路径。
Dijkstra算法的基本思想是,通过不断迭代,从源点开始,逐步确定到达其它顶点的最短路径。算法初始化时,设定源点到自身的距离为0,将源点标记为已访问。然后,对源点的所有邻接顶点进行松弛操作,即更新源点到邻接顶点的距离,并标记邻接顶点为已访问。接着,从未访问的顶点中选取距离源点最近的顶点,将其标记为已访问,并对其邻接顶点执行松弛操作。重复以上步骤,直到所有顶点都被访问过。
Dijkstra算法使用了贪心策略,每次选择距离源点最近的顶点来进行松弛操作,保证了迭代过程中得到的路径是最短的。最终,算法输出的结果是源点到所有其他顶点的最短路径和距离。
Dijkstra求最短路I -朴素Dijkstra算法(边权全为正数)
题目描述
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。数据范围
1≤n≤500,
1≤m≤105,
图中涉及边长均不超过10000。输入样例:
3 3 1 2 2 2 3 1 1 3 4
输出样例:
3
解题思路
- 本题题意以及数据范围可判断可以用稠密图。
- 用数组模拟邻接矩阵存储稠密图节点。
- 用集合s也就是st数组来充当最短距离点的集合。
- 从第一个点开始,逐步确定到达其它顶点的最短路径。
- 算法初始化时,设定源点到自身的距离为0。
- 遍历n次(n代表节点数量),每一次遍历所有的点,求出离源点最短距离点放入集合s,然后以最短距离点为基础,更新所有节点到源点的距离。
- 接着,从未访问的节点中选取距离源点最近的顶点,将其标记为已访问,并继续更新所有节点。重复以上步骤,直到所有顶点都被访问过。
AC Code
#include<iostream>
#include<cstring>
using namespace std;
const int N = 510;
int n, m;
int g[N][N]; // 稠密图,邻接矩阵
int disk[N]; // 该点到起点的最小距离
bool st[N]; // 记录 在最小距离的点的集合s外 的最小距离点,并加入s集合
int dijkstra(){
memset(disk, 0x3f, sizeof disk); // 初始化起点与点最小距离
disk[1] = 0; // 起点与起点距离为0
// 遍历n个点
for(int i = 0; i < n; i++){
int t = -1; // 记录当前在s集合外,最小距离的点
for(int j = 1; j <= n; j++){
// 当前点不在s集合内 且 t点未更新/t点距离比当前点最小距离大,更新t点
if(!st[j] && (t == -1 || disk[t] > disk[j]))
t = j;
}
st[t] = true; // 将t点放入s集合
// 以t点更新所有点最小距离
for(int j = 1; j <= n; j++){
// 在 起点到j点的距离 与 起点到t点距离+t点到j点距离 中,取最小值
disk[j] = min(disk[j], disk[t] + g[t][j]);
}
}
if(disk[n] == 0x3f3f3f3f) return -1;
else return disk[n];
}
int main(){
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
cin >> n >> m;
memset(g, 0x3f, sizeof g);
while(m--){
int a, b, c; cin >> a >> b >> c;
g[a][b] = min(g[a][b], c); // 解决重边与自环的问题
}
int t = dijkstra();
cout << t << endl;
return 0;
}