👋 Hey,代码探索者!
欢迎来到本期的算法修炼秘籍!本篇文章将带你探索动态规划中的“区间划分”问题,从建模到代码实现,全面掌握这一重要算法题型。🚀
🌟 本期聚焦
算法主题:区间划分问题的动态规划
- 难度:🟠 中等
- 考察点:动态规划建模、状态转移方程、时间与空间优化
- 适合人群:算法初学者 | 面试备战者 | 刷题狂魔
💡 亮点:学会区间划分问题的解决方法论后,你将能举一反三,轻松应对类似题目!
🔍 题目详解
1. 问题描述
在算法竞赛和动态规划领域,“区间划分”问题通常表现为:
- 将一个序列按某种规则划分成若干部分,通过特定操作(如合并)最小化或最大化某种代价/收益。
- 我们需要构造动态规划模型求解最优答案。
2. 解题思路
🧠 思考过程
- 分析问题本质:区间划分涉及将问题递归分解成更小的子问题。
- 动态规划建模:核心是找到合适的状态和转移方程来逐步扩展区间大小。
- 优化目标:通过动态规划表(
dp
数组)记录每个子问题的最优解。
💡 方法论:四步解决区间划分问题
- 问题分析与建模:明确区间划分目标和影响代价/收益的因素。
- 动态规划状态定义:以
dp[i][j]
表示区间[i, j]
的最优值。 - 状态转移方程:根据分割点
k
,递归求解子区间[i, k]
和[k+1, j]
的最优解。 - 初始条件与边界处理:从最小区间开始递推,确保计算顺序满足依赖关系。
📝 应用案例:最小和最大石子合并得分
问题描述
给定 n
堆石子排成一排,石子数依次为 [a1, a2, ..., an]
。通过 n-1
次合并,最终将所有石子合并成一堆,每次合并的代价为两堆石子的总和,求:
- 合并方式使得总得分 最小。
- 合并方式使得总得分 最大。
💻 代码实现
#include <iostream>
#include <vector>
#include <climits>
using namespace std;
int main() {
int n;
cin >> n