[分析] 一维庞加莱(Poincare)不等式

一、符号说明

给定一个函数f(x),可以定义各种各样的范数。本文中我们假设定义域\Omega是实轴上的一个区间。

1.1 Lp范数

最常用的范数为Lp,定义如下:

\Vert f \Vert_{L^p(\Omega)} = \left( \int_{\Omega} |f(x)|^p{\rm d}x \right)^{\frac{1}{p}}

其中比较常用的有:

\Vert f \Vert_{L^1(\Omega)} = \int_{\Omega} |f(x)|{\rm d}x

\Vert f \Vert_{L^2(\Omega)} = \left( \int_{\Omega} |f(x)|^2{\rm d}x \right)^{\frac{1}{2}}

\Vert f \Vert_{L^{\infty}(\Omega)} = \lim_{p \to \infty}\left( \int_{\Omega} |f(x)|^p{\rm d}x \right)^{\frac{1}{p}}

1.2 能量范数(H1范数)

下面这种范数往往与能量有关,在微分方程中经常使用:

\Vert f \Vert_{H^1(\Omega)} = \left( \int_{\Omega} (|f(x)|^2 + |f'(x)|^2){\rm d}x \right)^{\frac{1}{2}}

容易看出,H1范数与L2范数的关系:

\Vert f \Vert_{H^1(\Omega)}^2 = \Vert f \Vert_{L^2(\Omega)}^2 + \Vert f' \Vert_{L^2(\Omega)}^2

1.3 函数空间

对于一个函数,我们希望它的范数是有限的,也就是上面的积分是有限的,这样可以方便我们研究。于是,由上面的范数定义,可以自然得到对应的函数空间:

L^2(\Omega) = \left\{ f(x) :\left( \int_{\Omega} |f(x)|^2{\rm d}x \right)^{\frac{1}{2}} < \infty\right\}

p取其他值时的Lp空间的定义,读者可以很轻松地对照写出。

H^1(\Omega) = \left\{ f(x) : \left( \int_{\Omega} (|f(x)|^2 + |f'(x)|^2){\rm d}x \right)^{\frac{1}{2}} < \infty \right\}

在微分方程中,我们经常会考虑边值为0的方程。因此,如果H1空间中的函数同时还满足边值为0,则我们简记做下面的H01空间:

H_0^1(\Omega) = \left\{ f(x) \in H^1(\Omega) : f_{\partial\Omega}=0 \right\}

更具体的,对应到\Omega是实轴上区间时,\partial \Omega也就是两个区间端点。

二、 一维庞加莱不等式

2.1 定理

\Omega = (0, 1) \in {\mathbb R},若函数f \in H_0^1(\Omega) \cap C^1(\Omega),那么成立下面的不等式:

\Vert f(x) \Vert_{L^2(\Omega)} \le C\Vert f'(x) \Vert_{L^2(\Omega)}

其中C是与f无关的常数。

2.2 说明

庞加莱不等式本质上是利用函数的导数来控制原函数。

其中的积分区域为特殊的(0, 1)。换成其他区间是否成立,留给读者进行思考。

2.3 证明

由分部积分公式和f在边界上取到0,有

f(x) = f(0) + \int_0^xf'(s){\rm d}s = \int_0^xf'(s){\rm d}s

于是有

\Vert f(x) \Vert _{L^2(\Omega)} ^2= \int_0^1\left( \int_0^xf'(s) {\rm d}s \right)^2 {\rm d}x \\ \le \int_0^1\left( \int_0^x|f'(s)|^2 {\rm d}s\right)\left( \int_0^x|1|^2 {\rm d}s \right) {\rm d}x \\ = \int_0^1 x \left( \int_0^x|f'(s)|^2 {\rm d}s\right){\rm d}x \\ \le \int_0^1 x \left( \int_0^1|f'(s)|^2 {\rm d}s\right){\rm d}x \\ = \frac{1}{2}\int_0^1|f'(s)|^2 {\rm d}s\\ = \frac{1}{2}\Vert f'(x) \Vert _{L^2(\Omega)} ^2

其中第二行用到了积分形式的柯西施瓦兹(Cauchy-Schwarz)不等式。

三、 应用

3.1 H1范数与L2范数的等价性

由两种范数的定义,容易看出

\Vert f \Vert_{H^1(\Omega)}^2 = \Vert f \Vert_{L^2(\Omega)}^2 + \Vert f' \Vert_{L^2(\Omega)}^2

由庞加莱不等式,若f \in H_0^1(\Omega) \cap C^1(\Omega),则有

\frac{1}{C+1}\Vert f \Vert_{H^1(\Omega)} \le \Vert f' \Vert_{L^2(\Omega)} \le \Vert f \Vert_{H^1(\Omega)}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值