一、符号说明
给定一个函数,可以定义各种各样的范数。本文中我们假设定义域
是实轴上的一个区间。
1.1 Lp范数
最常用的范数为Lp,定义如下:
其中比较常用的有:
1.2 能量范数(H1范数)
下面这种范数往往与能量有关,在微分方程中经常使用:
容易看出,H1范数与L2范数的关系:
1.3 函数空间
对于一个函数,我们希望它的范数是有限的,也就是上面的积分是有限的,这样可以方便我们研究。于是,由上面的范数定义,可以自然得到对应的函数空间:
p取其他值时的Lp空间的定义,读者可以很轻松地对照写出。
在微分方程中,我们经常会考虑边值为0的方程。因此,如果H1空间中的函数同时还满足边值为0,则我们简记做下面的H01空间:
更具体的,对应到是实轴上区间时,
也就是两个区间端点。
二、 一维庞加莱不等式
2.1 定理
取,若函数
,那么成立下面的不等式:
其中C是与f无关的常数。
2.2 说明
庞加莱不等式本质上是利用函数的导数来控制原函数。
其中的积分区域为特殊的(0, 1)。换成其他区间是否成立,留给读者进行思考。
2.3 证明
由分部积分公式和f在边界上取到0,有
于是有
其中第二行用到了积分形式的柯西施瓦兹(Cauchy-Schwarz)不等式。
三、 应用
3.1 H1范数与L2范数的等价性
由两种范数的定义,容易看出
由庞加莱不等式,若,则有