1. Sobolev空间
设
Ω
\Omega
Ω 是
R
N
\mathbb{R}^N
RN 的任一开子集,对于每个整数
m
≥
1
m\ge 1
m≥1 以及每个扩展的实数
1
≤
p
≤
∞
1\le p\le \infty
1≤p≤∞ (扩展的实数好像就是在实数的基础上带上无穷), 实Sobolev空间记为
W
m
,
p
(
Ω
)
W^{m,p}(\Omega)
Wm,p(Ω)
如果p=2,则为
H
m
(
Ω
)
H^m(\Omega)
Hm(Ω)
由函数
v
∈
L
p
(
Ω
)
v\in L^p(\Omega)
v∈Lp(Ω) 组成。
这些函数满足:
对所有的重指标 α , 1 ≤ ∣ α ∣ ≤ m \alpha,1\le |\alpha|\le m α,1≤∣α∣≤m ,v的弱偏导数 ∂ α v ∈ L p ( Ω ) \partial^\alpha v \in L^p(\Omega) ∂αv∈Lp(Ω)
根据弱偏导数的定义,一个函数 v ∈ L p ( Ω ) v\in L^p(\Omega) v∈Lp(Ω) 属于 W m , p ( Ω ) W^{m,p}(\Omega) Wm,p(Ω) ,如果对每个重指标 α , 1 ≤ ∣ α ∣ ≤ m \alpha, 1\le |\alpha| \le m α,1≤∣α∣≤m ,存在一个函数 ∂ α v ∈ L p ( Ω ) \partial^\alpha v\in L^p(\Omega) ∂αv∈Lp(Ω) 使得
∫ Ω ( ∂ α v ) ϕ d x = ( − 1 ) ∣ α ∣ ∫ Ω v ∂ α ϕ d x , ∀ ϕ ∈ D ( Ω ) \int_\Omega (\partial^\alpha v) \phi dx = (-1)^{|\alpha|}\int_\Omega v\partial^\alpha \phi dx ,\forall \phi \in \mathcal{D}(\Omega) ∫Ω(∂αv)ϕdx=(−1)∣α∣∫Ωv∂αϕdx,∀ϕ∈D(Ω)
这样一个函数 ∂ α v ∈ L p ( Ω ) \partial^\alpha v\in L^p(\Omega) ∂αv∈Lp(Ω) 是由该式唯一确定的,而且如果 v ∈ C m ( Ω ) v\in \mathcal C^m(\Omega) v∈Cm(Ω) 那么那就是一般意义的偏导数。
1.1. Sobolev空间的一些性质
设 Ω是 R N \mathbb{R}^N RN 的开子集,而 m ≥ 1 m\ge 1 m≥1 是一个整数,装备范数
v → ∣ ∣ v ∣ ∣ m , p , Ω : = ( ∫ Ω ∑ ∣ α ∣ ≤ m ∣ ∂ α v ∣ p d x ) 1 p = ( ∑ 0 ≤ ∣ α ∣ ≤ m ∣ ∣ ∂ α v ∣ ∣ L 2 ( Ω ) p ) 1 p , p ≤ ∞ v\to ||v||_{m,p,\Omega}:=(\int_\Omega \mathop{\sum}\limits_{|\alpha|\le m} |\partial^\alpha v|^p dx)^{\frac{1}{p}} = (\mathop{\sum}\limits_{0\le |\alpha|\le m} ||\partial^\alpha v||^p_{L^2(\Omega)})^{\frac{1}{p}}, p\le \infty v→∣∣v∣∣m,p,Ω:=(∫Ω∣α∣≤m∑∣∂αv∣pdx)p1=(0≤∣α∣≤m∑∣∣∂αv∣∣L2(Ω)p)p1,p≤∞
v → ∣ ∣ v ∣ ∣ m , ∞ , Ω : = m a x ∣ α ∣ ≤ m ∣ ∣ ∂ α v ∣ ∣ L ∞ ( Ω ) , p = ∞ v\to ||v||_{m,\infty,\Omega}:= \mathop{max}\limits_{|\alpha|\le m} ||\partial^\alpha v||_{L^\infty (\Omega)},p = \infty v→∣∣v∣∣m,∞,Ω:=∣α∣≤mmax∣∣∂αv∣∣L∞(Ω),p=∞
的Sobelev空间是Banach空间。
- 在 1 ≤ p < ∞ 1\le p <\infty 1≤p<∞ 时是可分的,在 1 < p < ∞ 1< p < \infty 1<p<∞ 时是自反的
- 在 p=2 时是Hilbert空间
有限宽度: R N \mathbb{R}^N RN 的一个子集如果位于 R N \mathbb{R}^N RN 中的两个平行的超平面之间,则称其具有有限宽度。
设 Ω \Omega Ω 是 R N \mathbb{R}^N RN 的具有优先宽度的开子集,有
- 对每个 1 ≤ p < ∞ 1\le p < \infty 1≤p<∞ ,Poincare-Friedrichs不等式成立,即:
存在一个常数 c = c ( Ω , p ) c = c(\Omega,p) c=c(Ω,p) 使得
∣ ∣ v ∣ ∣ 0 , p , Ω ≤ c ∣ v ∣ 1 , p , Ω , ∀ v ∈ W 0 1 , p ( Ω ) ||v||_{0,p,\Omega}\le c|v|_{1,p,\Omega},\forall v\in W_0^{1,p}(\Omega) ∣∣v∣∣0,p,Ω≤c∣v∣1,p,Ω,∀v∈W01,p(Ω)
- 对每个 m ≥ 1 , 1 ≤ p < ∞ m\ge 1, 1\le p < \infty m≥1,1≤p<∞ ,半范数 ∣ ⋅ ∣ m , p , Ω |\cdot|_{m,p,\Omega} ∣⋅∣m,p,Ω 是空间 W 0 m , p ( Ω ) W_0^{m,p}(\Omega) W0m,p(Ω) 上等价于范数 ∣ ∣ ⋅ ∣ ∣ m , p , Ω ||\cdot||_{m,p,\Omega} ∣∣⋅∣∣m,p,Ω 的范数,即存在常熟 C = C ( Ω , m , p ) C=C(\Omega,m,p) C=C(Ω,m,p) 使得
∣ v ∣ m , p , Ω ≤ ∣ ∣ v ∣ ∣ m , p , Ω ≤ C ∣ v ∣ m , p , Ω , ∀ v ∈ W 0 m , p ( Ω ) |v|_{m,p,\Omega}\le ||v||_{m,p,\Omega}\le C|v|_{m,p,\Omega},\forall v\in W_{0}^{m,p}(\Omega) ∣v∣m,p,Ω≤∣∣v∣∣m,p,Ω≤C∣v∣m,p,Ω,∀v∈W0m,p(Ω)
1.2. 嵌入定理
嵌入:
符号
X
↪
Y
X\hookrightarrow Y
X↪Y 指赋范向量空间 X 连续地嵌入赋范向量空间 Y,也就是说
X
⊂
Y
X\subset Y
X⊂Y 而且存在一个常数c使得
∣
∣
v
∣
∣
Y
≤
c
∣
∣
v
∣
∣
X
,
∀
v
∈
X
||v||_Y\le c||v||_X, \forall v\in X
∣∣v∣∣Y≤c∣∣v∣∣X,∀v∈X ,或者说,恒等映射
(
X
,
∣
∣
⋅
∣
∣
X
)
→
(
Y
,
∣
∣
⋅
∣
∣
Y
)
(X,||\cdot||_X)\to (Y,||\cdot||_Y)
(X,∣∣⋅∣∣X)→(Y,∣∣⋅∣∣Y) 是连续的。
Sobelev 嵌入定理:
设
Ω
\Omega
Ω 是
R
N
\mathbb{R}^N
RN 中的区域,
m
≥
1
m\ge 1
m≥1 是整数而
1
≤
1
<
∞
1\le 1 < \infty
1≤1<∞ ,则有连续嵌入成立:
W m , p ( Ω ) ↪ L P ∗ ( Ω ) , 其 中 1 p ∗ = 1 p − m N , m ≤ N p W^{m,p}(\Omega) \hookrightarrow L^{P^*}(\Omega), 其中\frac{1}{p^*} = \frac{1}{p} - \frac{m}{ N}, ~~~~~~~~ m\le\frac{N}{p} Wm,p(Ω)↪LP∗(Ω),其中p∗1=p1−Nm, m≤pN
W m , p ( Ω ) ↪ L P ( Ω ) , 对 所 有 满 足 1 ≤ q < ∞ 的 q , m = N p W^{m,p}(\Omega) \hookrightarrow L^{P}(\Omega), 对所有满足 1\le q < \infty 的q, ~~~~~~~~ m = \frac{N}{p} Wm,p(Ω)↪LP(Ω),对所有满足1≤q<∞的q, m=pN
W m , p ( Ω ) ↪ C 0 , m − N / p ( Ω ‾ ) , N p < m < N p + 1 W^{m,p}(\Omega) \hookrightarrow \mathcal{C}^{0,m-N/p}(\overline \Omega), \frac{N}{p}<m<\frac{N}{p} + 1 Wm,p(Ω)↪C0,m−N/p(Ω),pN<m<pN+1
W m , p ( Ω ) ↪ C 0 , λ ( Ω ‾ ) , 0 < λ < 1 , m = N p + 1 W^{m,p}(\Omega) \hookrightarrow \mathcal{C}^{0,\lambda}(\overline \Omega),0<\lambda<1, m = \frac{N}{p} + 1 Wm,p(Ω)↪C0,λ(Ω),0<λ<1,m=pN+1
W m , p ( Ω ) ↪ C 0 , λ ( Ω ‾ ) , N p + 1 < m W^{m,p}(\Omega) \hookrightarrow \mathcal{C}^{0,\lambda}(\overline \Omega),\frac{N}{p} +1 < m Wm,p(Ω)↪C0,λ(Ω),pN+1<m
1.3. Sobolev空间中的Green公式
设 Ω \Omega Ω 是 R N \mathbb{R}^N RN 中的一个区域,而 ν = ( ν i ) i = 1 N \nu = (\nu_i)_{i=1}^N ν=(νi)i=1N 表示沿着 Γ \Gamma Γ 的单位外法向量场,设 1 ≤ p < ∞ , 1 ≤ q < ∞ 1\le p <\infty,1\le q <\infty 1≤p<∞,1≤q<∞ 使得
1 p + 1 q ≤ 1 + 1 N { 1 ≤ q < N 且 1 ≤ q < N 1 < q , N ≤ p 1 < p , N ≤ q \frac{1}{p} + \frac{1}{q} \le 1+ \frac{1}{N} \begin{cases} 1\le q<N 且 1\le q<N\\ 1<q,N\le p \\ 1<p,N\le q \end{cases} p1+q1≤1+N1⎩⎪⎨⎪⎧1≤q<N且1≤q<N1<q,N≤p1<p,N≤q
则给定函数 u ∈ W 1 , p ( Ω ) u\in W^{1,p}(\Omega) u∈W1,p(Ω) 以及 v ∈ W 1 , q ( Ω ) v\in W^{1,q}(\Omega) v∈W1,q(Ω) ,每个函数 u v ν i , 1 ≤ i ≤ N uv\nu_i,1\le i \le N uvνi,1≤i≤N 都属于空间 L 1 ( Γ ) L^1(\Gamma) L1(Γ) 而且有
∫ Ω u ∂ i v d x = − ∫ Ω ( ∂ i u ) v d x + ∫ Γ u v ν i d Γ \int_\Omega u\partial_i vdx = -\int _{\Omega} (\partial_i u )vdx + \int_{\Gamma} uv\nu _i d\Gamma ∫Ωu∂ivdx=−∫Ω(∂iu)vdx+∫ΓuvνidΓ
如果 u , v ∈ H 1 ( Ω ) u,v \in H^1(\Omega) u,v∈H1(Ω) ,则基本Green公式 对任何维数 N ≥ 2 N\ge 2 N≥2 都成立。