泛函分析笔记(十九) Sobolev空间、Green公式

1. Sobolev空间

Ω \Omega Ω R N \mathbb{R}^N RN 的任一开子集,对于每个整数 m ≥ 1 m\ge 1 m1 以及每个扩展的实数 1 ≤ p ≤ ∞ 1\le p\le \infty 1p (扩展的实数好像就是在实数的基础上带上无穷), 实Sobolev空间记为
W m , p ( Ω ) W^{m,p}(\Omega) Wm,p(Ω)
如果p=2,则为 H m ( Ω ) H^m(\Omega) Hm(Ω)
由函数 v ∈ L p ( Ω ) v\in L^p(\Omega) vLp(Ω) 组成。
这些函数满足:


对所有的重指标 α , 1 ≤ ∣ α ∣ ≤ m \alpha,1\le |\alpha|\le m α,1αm ,v的弱偏导数 ∂ α v ∈ L p ( Ω ) \partial^\alpha v \in L^p(\Omega) αvLp(Ω)


根据弱偏导数的定义,一个函数 v ∈ L p ( Ω ) v\in L^p(\Omega) vLp(Ω) 属于 W m , p ( Ω ) W^{m,p}(\Omega) Wm,p(Ω) ,如果对每个重指标 α , 1 ≤ ∣ α ∣ ≤ m \alpha, 1\le |\alpha| \le m α,1αm ,存在一个函数 ∂ α v ∈ L p ( Ω ) \partial^\alpha v\in L^p(\Omega) αvLp(Ω) 使得

∫ Ω ( ∂ α v ) ϕ d x = ( − 1 ) ∣ α ∣ ∫ Ω v ∂ α ϕ d x , ∀ ϕ ∈ D ( Ω ) \int_\Omega (\partial^\alpha v) \phi dx = (-1)^{|\alpha|}\int_\Omega v\partial^\alpha \phi dx ,\forall \phi \in \mathcal{D}(\Omega) Ω(αv)ϕdx=(1)αΩvαϕdx,ϕD(Ω)

这样一个函数 ∂ α v ∈ L p ( Ω ) \partial^\alpha v\in L^p(\Omega) αvLp(Ω) 是由该式唯一确定的,而且如果 v ∈ C m ( Ω ) v\in \mathcal C^m(\Omega) vCm(Ω) 那么那就是一般意义的偏导数。

1.1. Sobolev空间的一些性质


设 Ω是 R N \mathbb{R}^N RN 的开子集,而 m ≥ 1 m\ge 1 m1 是一个整数,装备范数

v → ∣ ∣ v ∣ ∣ m , p , Ω : = ( ∫ Ω ∑ ∣ α ∣ ≤ m ∣ ∂ α v ∣ p d x ) 1 p = ( ∑ 0 ≤ ∣ α ∣ ≤ m ∣ ∣ ∂ α v ∣ ∣ L 2 ( Ω ) p ) 1 p , p ≤ ∞ v\to ||v||_{m,p,\Omega}:=(\int_\Omega \mathop{\sum}\limits_{|\alpha|\le m} |\partial^\alpha v|^p dx)^{\frac{1}{p}} = (\mathop{\sum}\limits_{0\le |\alpha|\le m} ||\partial^\alpha v||^p_{L^2(\Omega)})^{\frac{1}{p}}, p\le \infty vvm,p,Ω:=(Ωαmαvpdx)p1=(0αmαvL2(Ω)p)p1,p

v → ∣ ∣ v ∣ ∣ m , ∞ , Ω : = m a x ∣ α ∣ ≤ m ∣ ∣ ∂ α v ∣ ∣ L ∞ ( Ω ) , p = ∞ v\to ||v||_{m,\infty,\Omega}:= \mathop{max}\limits_{|\alpha|\le m} ||\partial^\alpha v||_{L^\infty (\Omega)},p = \infty vvm,,Ω:=αmmaxαvL(Ω),p=

的Sobelev空间是Banach空间。

  • 1 ≤ p < ∞ 1\le p <\infty 1p< 时是可分的,在 1 < p < ∞ 1< p < \infty 1<p< 时是自反的
  • 在 p=2 时是Hilbert空间

有限宽度: R N \mathbb{R}^N RN 的一个子集如果位于 R N \mathbb{R}^N RN 中的两个平行的超平面之间,则称其具有有限宽度。

Ω \Omega Ω R N \mathbb{R}^N RN 的具有优先宽度的开子集,有

  • 对每个 1 ≤ p < ∞ 1\le p < \infty 1p< ,Poincare-Friedrichs不等式成立,即:

存在一个常数 c = c ( Ω , p ) c = c(\Omega,p) c=c(Ω,p) 使得

∣ ∣ v ∣ ∣ 0 , p , Ω ≤ c ∣ v ∣ 1 , p , Ω , ∀ v ∈ W 0 1 , p ( Ω ) ||v||_{0,p,\Omega}\le c|v|_{1,p,\Omega},\forall v\in W_0^{1,p}(\Omega) v0,p,Ωcv1,p,Ω,vW01,p(Ω)

  • 对每个 m ≥ 1 , 1 ≤ p < ∞ m\ge 1, 1\le p < \infty m1,1p< ,半范数 ∣ ⋅ ∣ m , p , Ω |\cdot|_{m,p,\Omega} m,p,Ω 是空间 W 0 m , p ( Ω ) W_0^{m,p}(\Omega) W0m,p(Ω) 上等价于范数 ∣ ∣ ⋅ ∣ ∣ m , p , Ω ||\cdot||_{m,p,\Omega} m,p,Ω 的范数,即存在常熟 C = C ( Ω , m , p ) C=C(\Omega,m,p) C=C(Ω,m,p) 使得

∣ v ∣ m , p , Ω ≤ ∣ ∣ v ∣ ∣ m , p , Ω ≤ C ∣ v ∣ m , p , Ω , ∀ v ∈ W 0 m , p ( Ω ) |v|_{m,p,\Omega}\le ||v||_{m,p,\Omega}\le C|v|_{m,p,\Omega},\forall v\in W_{0}^{m,p}(\Omega) vm,p,Ωvm,p,ΩCvm,p,Ω,vW0m,p(Ω)

1.2. 嵌入定理

嵌入:
符号 X ↪ Y X\hookrightarrow Y XY 指赋范向量空间 X 连续地嵌入赋范向量空间 Y,也就是说 X ⊂ Y X\subset Y XY 而且存在一个常数c使得 ∣ ∣ v ∣ ∣ Y ≤ c ∣ ∣ v ∣ ∣ X , ∀ v ∈ X ||v||_Y\le c||v||_X, \forall v\in X vYcvX,vX ,或者说,恒等映射 ( X , ∣ ∣ ⋅ ∣ ∣ X ) → ( Y , ∣ ∣ ⋅ ∣ ∣ Y ) (X,||\cdot||_X)\to (Y,||\cdot||_Y) (X,X)(Y,Y) 是连续的。

Sobelev 嵌入定理:
Ω \Omega Ω R N \mathbb{R}^N RN 中的区域, m ≥ 1 m\ge 1 m1 是整数而 1 ≤ 1 < ∞ 1\le 1 < \infty 11< ,则有连续嵌入成立:

W m , p ( Ω ) ↪ L P ∗ ( Ω ) , 其 中 1 p ∗ = 1 p − m N ,          m ≤ N p W^{m,p}(\Omega) \hookrightarrow L^{P^*}(\Omega), 其中\frac{1}{p^*} = \frac{1}{p} - \frac{m}{ N}, ~~~~~~~~ m\le\frac{N}{p} Wm,p(Ω)LP(Ω),p1=p1Nm,        mpN

W m , p ( Ω ) ↪ L P ( Ω ) , 对 所 有 满 足 1 ≤ q < ∞ 的 q ,          m = N p W^{m,p}(\Omega) \hookrightarrow L^{P}(\Omega), 对所有满足 1\le q < \infty 的q, ~~~~~~~~ m = \frac{N}{p} Wm,p(Ω)LP(Ω),1q<q,        m=pN

W m , p ( Ω ) ↪ C 0 , m − N / p ( Ω ‾ ) , N p < m < N p + 1 W^{m,p}(\Omega) \hookrightarrow \mathcal{C}^{0,m-N/p}(\overline \Omega), \frac{N}{p}<m<\frac{N}{p} + 1 Wm,p(Ω)C0,mN/p(Ω),pN<m<pN+1

W m , p ( Ω ) ↪ C 0 , λ ( Ω ‾ ) , 0 < λ < 1 , m = N p + 1 W^{m,p}(\Omega) \hookrightarrow \mathcal{C}^{0,\lambda}(\overline \Omega),0<\lambda<1, m = \frac{N}{p} + 1 Wm,p(Ω)C0,λ(Ω),0<λ<1,m=pN+1

W m , p ( Ω ) ↪ C 0 , λ ( Ω ‾ ) , N p + 1 < m W^{m,p}(\Omega) \hookrightarrow \mathcal{C}^{0,\lambda}(\overline \Omega),\frac{N}{p} +1 < m Wm,p(Ω)C0,λ(Ω),pN+1<m

1.3. Sobolev空间中的Green公式

Ω \Omega Ω R N \mathbb{R}^N RN 中的一个区域,而 ν = ( ν i ) i = 1 N \nu = (\nu_i)_{i=1}^N ν=(νi)i=1N 表示沿着 Γ \Gamma Γ 的单位外法向量场,设 1 ≤ p < ∞ , 1 ≤ q < ∞ 1\le p <\infty,1\le q <\infty 1p<,1q< 使得

1 p + 1 q ≤ 1 + 1 N { 1 ≤ q < N 且 1 ≤ q < N 1 < q , N ≤ p 1 < p , N ≤ q \frac{1}{p} + \frac{1}{q} \le 1+ \frac{1}{N} \begin{cases} 1\le q<N 且 1\le q<N\\ 1<q,N\le p \\ 1<p,N\le q \end{cases} p1+q11+N11q<N1q<N1<q,Np1<p,Nq

则给定函数 u ∈ W 1 , p ( Ω ) u\in W^{1,p}(\Omega) uW1,p(Ω) 以及 v ∈ W 1 , q ( Ω ) v\in W^{1,q}(\Omega) vW1,q(Ω) ,每个函数 u v ν i , 1 ≤ i ≤ N uv\nu_i,1\le i \le N uvνi,1iN 都属于空间 L 1 ( Γ ) L^1(\Gamma) L1(Γ) 而且有

∫ Ω u ∂ i v d x = − ∫ Ω ( ∂ i u ) v d x + ∫ Γ u v ν i d Γ \int_\Omega u\partial_i vdx = -\int _{\Omega} (\partial_i u )vdx + \int_{\Gamma} uv\nu _i d\Gamma Ωuivdx=Ω(iu)vdx+ΓuvνidΓ

如果 u , v ∈ H 1 ( Ω ) u,v \in H^1(\Omega) u,vH1(Ω) ,则基本Green公式 对任何维数 N ≥ 2 N\ge 2 N2 都成立。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙粽子好吃嘛!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值