卷积神经网络(CNN)是一种在计算机视觉领域广泛应用的深度学习模型。它通过模仿人类视觉系统的工作原理,能够自动从图像中提取特征,并在图像分类、目标检测、语义分割等任务中取得卓越的性能。
CNN的核心组成部分是卷积层。卷积层通过应用卷积操作在输入图像上提取特征。卷积操作通过滑动的方式在输入图像上移动一个小的滤波器(卷积核),将滤波器与图像上的局部区域进行点乘,并将结果相加得到卷积特征。卷积层具有局部感知性和权值共享的特点,能够有效地捕捉图像的空间局部信息。
在卷积神经网络中,池化层也是一个重要的组件。池化层用于减小卷积层输出的维度,并提取最显著的特征。最大池化和平均池化是常用的池化操作,它们通过选取局部区域中的最大值或平均值来减小特征图的大小,同时保留重要的特征信息。+v❤公众Ha..o:Ai技术星球 回复(123)领CNN相关资料,还有500G人工智能学习资料
另一个关键部分是激活函数。激活函数引入非线性因素,增加模型的表达能力。常用的激活函数有ReLU(Rectified Linear Unit)、Sigmoid和Tanh函数。ReLU函数在正区间上输出输入值,将负值截断为零,具有快速计算和抑制梯度消失的优势。Sigmoid函数将输入值映射到0和1之间,常用于二分类问题。Tanh函数将输入值映射到-1和1之间,适用于对称性的分类任务。
除了这些基本组件,卷积神经网络还包括全连接层。全连接层将前面卷积层和池化层提取的特征映射转化为