2024年高教社杯 国赛B 题 生产过程中的决策问题

某企业生产某种畅销的电子产品,需要分别购买两种零配件(零配件 1 和零配件 2), 在企业将两个零配件装配成成品。在装配的成品中,只要其中一个零配件不合格,则成品一 定不合格;如果两个零配件均合格,装配出的成品也不一定合格。对于不合格成品,企业可 以选择报废,或者对其进行拆解,拆解过程不会对零配件造成损坏,但需要花费拆解费用。

请建立数学模型,解决以下问题:

问题 1 供应商声称一批零配件(零配件 1 或零配件 2)的次品率不会超过某个标称值。 企业准备采用抽样检测方法决定是否接收从供应商购买的这批零配件,检测费用由企业自行承担。

请为企业设计检测次数尽可能少的抽样检测方案。

如果标称值为 10%,根据你们的抽样检测方案,针对以下两种情形,分别给出具体结果:

(1) 在 95%的信度下认定零配件次品率超过标称值,则拒收这批零配件;

(2) 在 90%的信度下认定零配件次品率不超过标称值,则接收这批零配件。

问题 2 已知两种零配件和成品次品率,请为企业生产过程的各个阶段作出决策:

(1) 对零配件(零配件 1 和/或零配件 2)是否进行检测,如果对某种零配件不检测,这 种零配件将直接进入到装配环节;否则将检测出的不合格零配件丢弃;

(2) 对装配好的每一件成品是否进行检测,如果不检测,装配后的成品直接进入到市场; 否则只有检测合格的成品进入到市场;

(3) 对检测出的不合格成品是否进行拆解,如果不拆解,直接将不合格成品丢弃;否则 对拆解后的零配件,重复步骤(1)和步骤(2);

(4) 对用户购买的不合格品,企业将无条件予以调换,并产生一定的调换损失(如物流 成本、企业信誉等)。对退回的不合格品,重复步骤(3)。

请根据你们所做的决策,对表 1 中的情形给出具体的决策方案,并给出决策的依据及相 应的指标结果。

问题 3 对 𝑚 道工序、𝑛 个零配件,已知零配件、半成品和成品的次品率,重复问题 2,给出生产过程的决策方案。图 1 给出了 2 道工序、8 个零配件的情况,具体数值由表 2 给出。

问题 4 假设问题 2 和问题 3 中零配件、半成品和成品的次品率均是通过抽样检测方法 (例如,你在问题 1 中使用的方法)得到的,请重新完成问题 2 和问题 3。

话不多说,开始快乐解题吧~(资料领取关注:公粽号:

以下是我目前解决的目录:

 

import scipy.stats as stats
import math
import matplotlib.pyplot as plt


p0 = 0.1  
alpha1 = 0.05 
alpha2 = 0.10  
Z1 = stats.norm.ppf(1 - alpha1)  
Z2 = stats.norm.ppf(1 - alpha2)  


E = 0.05  # 允许误差率

# 样本量计算
n1 = math.ceil((Z1**2 * p0 * (1 - p0)) / E**2)  # 对应 95% 置信度
n2 = math.ceil((Z2**2 * p0 * (1 - p0)) / E**2)  # 对应 90% 置信度

# 输出样本量结果
print(f"在 95% 的置信度下,检测次品率超过标称值的样本量为: {n1}")
print(f"在 90% 的置信度下,检测次品率不超过标称值的样本量为: {n2}")
在 95% 的置信度下,检测次品率超过标称值的样本量为: 98
在 90% 的置信度下,检测次品率不超过标称值的样本量为: 60
detected_defects_95 = 15  
detected_defects_90 = 5   

actual_defect_rate_95 = detected_defects_95 / n1
actual_defect_rate_90 = detected_defects_90 / n2

# 决策输出部分
# 在 95% 置信度下,如果次品率超过标称值,则拒收
decision_95 = "拒收" if actual_defect_rate_95 > p0 else "接收"
print(f"在 95% 的置信度下,检测到次品率为 {actual_defect_rate_95:.2%},应{decision_95}该批次。")

# 在 90% 置信度下,如果次品率不超过标称值,则接收
decision_90 = "接收" if actual_defect_rate_90 <= p0 else "拒收"
print(f"在 90% 的置信度下,检测到次品率为 {actual_defect_rate_90:.2%},应{decision_90}该批次。")
在 95% 的置信度下,检测到次品率为 15.31%,应拒收该批次。
在 90% 的置信度下,检测到次品率为 8.33%,应接收该批次。

 

import warnings
warnings.filterwarnings('ignore')
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import font_manager
font_path = "D:/jupyterproject/FangZhengHeiTiJianTi-1.ttf"
font_prop = font_manager.FontProperties(fname=font_path)
plt.rcParams['font.family'] = font_prop.get_name() 
plt.rcParams['axes.unicode_minus'] = False  
sns.set(style="whitegrid") 
plt.figure(figsize=(12, 6))

# 绘制 95% 置信度下的次品率检测
plt.subplot(1, 2, 1)
plt.bar(['标称次品率', '实际次品率'], [p0, actual_defect_rate_95], color=['blue', 'red'])
plt.axhline(p0, color='green', linestyle='--', label='标称次品率')
plt.title('95% 置信度检测结果', fontproperties=font_prop)
plt.ylabel('次品率', fontproperties=font_prop)
plt.xticks(fontproperties=font_prop)  
plt.yticks(fontproperties=font_prop)  
plt.text(1, actual_defect_rate_95, f'{decision_95}', ha='center', va='bottom', fontsize=12, color='black', fontproperties=font_prop)
plt.legend(prop=font_prop)

# 绘制 90% 置信度下的次品率检测
plt.subplot(1, 2, 2)
plt.bar(['标称次品率', '实际次品率'], [p0, actual_defect_rate_90], color=['blue', 'red'])
plt.axhline(p0, color='green', linestyle='--', label='标称次品率')
plt.title('90% 置信度检测结果', fontproperties=font_prop)
plt.ylabel('次品率', fontproperties=font_prop)
plt.xticks(fontproperties=font_prop)  
plt.yticks(fontproperties=font_prop) 
plt.text(1, actual_defect_rate_90, f'{decision_90}', ha='center', va='bottom', fontsize=12, color='black', fontproperties=font_prop)
plt.legend(prop=font_prop)

plt.tight_layout()
plt.show()

 

### 关于2024高教B的MATLAB解方法 针对2024高教B,可以采用多种MATLAB工具和技术来进行数据分析和建模。具体来说,可以从以下几个方面入手: #### 数据预处理 在开始分析之前,需要先加载并清理数据。对于给定的数据集,如葡萄酒品尝评分表、理化指标以及芳香物质等,可以通过读取CSV文件或其他格式的数据文件来获取原始数据。 ```matlab % 加载数据 data_wine_tasting = readtable('wine_tasting_scores.csv'); % 假设为CSV文件 data_chemicals = readtable('grape_and_wine_chemistry.csv'); data_aromas = readtable('aromatic_compounds.csv'); % 查看前几行数据以了解结构 head(data_wine_tasting); ``` #### 探索性数据分析 (EDA) 利用统计图表探索变量之间的关系,识别潜在模式或异常值。这有助于理解不同因素如何影响最终结果。 ```matlab figure; histogram(data_wine_tasting.Score); % 绘制分数分布直方图 title('Wine Tasting Scores Distribution'); xlabel('Score'); ylabel('Frequency'); scatter(data_chemicals.Alcohol, data_chemicals.PH); % 酒精含量与pH的关系散点图 title('Alcohol Content vs pH Level in Wine Samples'); xlabel('Alcohol (%)'); ylabel('pH Value'); ``` #### 构建模型 基于问描述中的线性规划思路[^1],可以选择合适的算法实现优化目标函数。例如,在作物种植策略中应用线性回归预测产量;而在本案例里,则可能涉及多元线性回归或多分类支持向量机(SVM)用于品质评估。 ```matlab % 使用fitlm拟合多变量线性回归模型 mdl = fitlm(data_chemicals(:, {'FixedAcidity', 'VolatileAcidity'}), ... data_chemicals.Quality); disp(mdl); % 显示模型详情 ``` #### 结果解释与可视化 最后一步是对所得结论做出合理解读,并通过图形展示关键发现。这样不仅便于报告撰写者传达信息,也方便评审专家快速把握核心要点。 ```matlab plotSlice(mdl); % 可视化各特征对响应的影响程度 title('Effect of Chemical Properties on Wine Quality'); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值