目录
期末备考用的,列出来的都是必考重点, 标红的必背,标黄的注意有坑
图的基本概念
- 不考虑点的位置以及连线的长短取值,只关心哪些点之间有连线
- 一个图是一个三元组,, V(G)是非空结点集,E(G)是边集, 是边集到结点的有序对或无序对集合的函数
- 无向边——不带箭头,边与结点无序偶相关联
- 有向边——带箭头, 边与结点有序偶相关联
- 无向图——每一条边都是无向边
- 有向图——每一条边都是有向边
- 混合图——一些边是有向边,一些边是无向边
- 邻接点——有一条边关联的两个点
- 邻接边——关联与同一个结点的两个边
- 孤立点——不与任何结点相邻接的结点
- 零图——仅由孤立结点组成的图
- 平凡图——仅由一个孤立点构成的图
- 自回路或环——关联与同一结点的一条边成为自回路或环
- deg(V)——结点的度数,即与结点V关联的边数
- 每个图中, 所有结点度数的和等于边数的2倍
- 在任何图中,度数为奇数的结点必为偶数个
- 在有向图中,所有结点的入度之和等于所有结点的出度之和
- 平行边——连接同一对结点的多条相同边称为平行边, 平行边的条数称为该平行边的重数
- 多重图——含有平行边的图
- 简单图——不含平行边和环的图
- 图的同构充要条件——两个图的结点和边分别存在着一一对应,且保持关联关系
- 两图同构的必要条件——1.结点数目相等2.边数相等3.度数相等的结点数目相等
在上图中,a, b, c同构, d, e, f同构
路与回路
- 迹(简单通路)——路中所有边都不同
- 通路(基本通路)——路中所有点都不同
- 圈——闭的通路,除了,路中所有点均不同
- 通路迹,反之则不真
-
路的性质: v i 到 vj 存在路 ,则从 vi 到 vj 存在长度小于等于 , 在一个n阶图中,若从顶点 n −1 的路。
-
回路的性质 —— 定理: 在一个 n 阶图中,若 vi 到自身存在回路, 则从 vi 到自身存在长度小于等于 n 的回路。
-
正则图,连通图,非连通图,点割集,边割集,强分图,单侧分图,弱分图等概念
图的矩阵表示
无向图的邻接矩阵
有向图的邻接矩阵
有向图的可达矩阵
欧拉图与汉密尔顿图
- 欧拉图:一笔画游戏,遍历所有的边没有重复
- 汉密尔顿图:遍历所有的点没有重复