经验分布函数无偏性的证明和方差的推导

经验分布函数

定义: X 1 , ⋯   , X n ∼ F X_1, \cdots,X_n\sim F X1,,XnF为IID样本,F是某个分布函数。则F的一个估计为经验分布函数: F n ^ ( x ) = ∑ i = 1 N I ( X i < x ) n \hat{F_n}(x)=\frac{\sum_{i=1}^{N}I(X_i<x)}{n} Fn^(x)=ni=1NI(Xi<x)上式的含义是在每一个数据处放置一个 1 n \frac{1}{n} n1的概率密度。个人理解就是类似于一个累计直方图。
其中, I ( X i < x ) I(X_i<x) I(Xi<x)是示性函数,括号内满足时为1,不满足时为0。特别注意上式是关于 x x x的函数。

无偏性

下面我要证明这个估计是一个无偏估计。
E [ F n ^ ( x ) ] = E [ ∑ i = 1 N I ( X i < x ) n ] = 1 n ∑ i = 1 N E [ I ( X i < x ) ] = 1 n ∑ i = 1 N ∫ x I ( X i < x ) f X ( x ) d x = 1 n ∑ i = 1 N ∫ X i < x f X ( x ) d x = 1 n ∑ i = 1 N P ( X i < x ) = F ( x ) \begin{aligned} E[\hat{F_n}(x)] & =E[\frac{\sum_{i=1}^{N}I(X_i<x)}{n}]\\ & =\frac{1}{n}\sum_{i=1}^{N}E[I(X_i<x)]\\ &=\frac{1}{n}\sum_{i=1}^{N}\int_xI(X_i<x)f_X(x)dx\\ &=\frac{1}{n}\sum_{i=1}^{N}\int_{X_i<x}f_X(x)dx\\ &=\frac{1}{n}\sum_{i=1}^{N}P(X_i<x)\\ &=F(x) \end{aligned} E[Fn^(x)]=E[ni=1NI(Xi<x)]=n1i=1NE[I(Xi<x)]=n1i=1NxI(Xi<x)fX(x)dx=n1i=1NXi<xfX(x)dx=n1i=1NP(Xi<x)=F(x)

方差的推导

V ( F n ^ ( x ) ) = V ( ∑ i = 1 N I ( X i < x ) n ) = 1 n 2 ∑ i = 1 N V ( I ( X i < x ) ) = 1 n 2 ∑ i = 1 N ( E ( I ( X i < x ) 2 ) − ( E ( I ( X i < x ) ) ) 2 ) = 1 n 2 ∑ i = 1 N ( E ( I ( X i < x ) − ( E ( I ( X i < x ) ) ) 2 ) = 1 n 2 ∑ i = 1 N ( F ( x ) − F ( x ) 2 ) = F ( x ) ( 1 − F ( x ) ) n \begin{aligned} \mathbb{V}(\hat{F_n}(x))&=V(\frac{\sum_{i=1}^{N}I(X_i<x)}{n})\\ &=\frac{1}{n^2}\sum_{i=1}^{N}V(I(X_i<x))\\ &=\frac{1}{n^2}\sum_{i=1}^{N}(E(I(X_i<x)^2)-(E(I(X_i<x)))^2)\\ &=\frac{1}{n^2}\sum_{i=1}^{N}(E(I(X_i<x)-(E(I(X_i<x)))^2)\\ &=\frac{1}{n^2}\sum_{i=1}^{N}(F(x)-F(x)^2)\\ &=\frac{F(x)(1-F(x))}{n} \end{aligned} V(Fn^(x))=V(ni=1NI(Xi<x))=n21i=1NV(I(Xi<x))=n21i=1N(E(I(Xi<x)2)(E(I(Xi<x)))2)=n21i=1N(E(I(Xi<x)(E(I(Xi<x)))2)=n21i=1N(F(x)F(x)2)=nF(x)(1F(x))
这里面用到了示性函数的平方等于它本身的特点。

这实际上也是Larry Wasserman《All of statistics》定理7.3的证明,也就是课后习题第一道。证明过程都是自己写的,不一定正确,欢迎大家来探讨。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Gumbel分布是极值分布之一,通常用于描述最大值或最小值的分布情况。假设$X$是一个连续型随机变量,其概率密度函数为: $$f(x)=\frac{1}{\beta}e^{-(x-\mu)/\beta}e^{-e^{-(x-\mu)/\beta}}$$ 其中,$\mu$为位置参数,$\beta$为尺度参数。 该分布分布函数为: $$F(x)=e^{-e^{-(x-\mu)/\beta}}$$ 期望和方差分别为: $$E(X)=\mu+\gamma\beta,$$ $$Var(X)=\frac{\pi^2}{6}\beta^2,$$ 其中,$\gamma$为欧拉常数,$\gamma\approx0.5772$。 推导过程如下: 首先,我们需要求出该分布分布函数。对于任意一个实数$x$,有: $$F(x)=P(X\leq x)=\int_{-\infty}^x f(t)dt$$ 将概率密度函数代入得: $$F(x)=\int_{-\infty}^x \frac{1}{\beta}e^{-(t-\mu)/\beta}e^{-e^{-(t-\mu)/\beta}}dt$$ 令$y=e^{-(t-\mu)/\beta}$,则$t=\mu-\beta\ln y$,$dt=-\frac{\beta}{y}dy$,代入得: $$F(x)=\int_0^{e^{-(x-\mu)/\beta}}\frac{1}{\beta}e^{-\ln y}dy=\int_0^{e^{-(x-\mu)/\beta}}y^{-1}dy=\left.-\ln y\right|_0^{e^{-(x-\mu)/\beta}}=e^{-e^{-(x-\mu)/\beta}}$$ 因此,该分布分布函数为$F(x)=e^{-e^{-(x-\mu)/\beta}}$。 接下来,我们求期望和方差。首先,计算期望: $$E(X)=\int_{-\infty}^\infty x f(x)dx=\int_{-\infty}^\infty x\frac{1}{\beta}e^{-(x-\mu)/\beta}e^{-e^{-(x-\mu)/\beta}}dx$$ 令$y=e^{-(x-\mu)/\beta}$,则$x=\mu-\beta\ln y$,$dx=-\frac{\beta}{y}dy$,代入得: $$E(X)=\int_0^\infty (\mu-\beta\ln y)\frac{1}{\beta}e^{-\ln y}dy=\mu-\int_0^\infty y^{-1}\ln y dy$$ 对于$\int_0^\infty y^{-1}\ln y dy$,我们可以采用分部积分法。设$u=\ln y$,$dv=y^{-1}dy$,则$du=y^{-1}dy$,$v=\ln y$,代入得: $$\int_0^\infty y^{-1}\ln y dy=\left.y\ln y\right|_0^\infty-\int_0^\infty 1dy=0+1=1$$ 因此,$E(X)=\mu-\gamma\beta$。 接下来,计算方差: $$Var(X)=E(X^2)-[E(X)]^2=\int_{-\infty}^\infty x^2 f(x)dx-(\mu-\gamma\beta)^2$$ 将概率密度函数代入得: $$Var(X)=\int_{-\infty}^\infty x^2\frac{1}{\beta}e^{-(x-\mu)/\beta}e^{-e^{-(x-\mu)/\beta}}dx-(\mu-\gamma\beta)^2$$ 令$y=e^{-(x-\mu)/\beta}$,则$x=\mu-\beta\ln y$,$dx=-\frac{\beta}{y}dy$,代入得: $$Var(X)=\int_0^\infty (\mu-\beta\ln y)^2\frac{1}{\beta}e^{-\ln y}dy-(\mu-\gamma\beta)^2$$ 展开得: $$Var(X)=\int_0^\infty \frac{\mu^2}{\beta}y^{-1}e^{-\ln y}dy-2\mu\int_0^\infty y^{-1}\ln y e^{-\ln y}dy+\beta^2\int_0^\infty y^{-1}(\ln y)^2 e^{-\ln y}dy-(\mu-\gamma\beta)^2$$ 对于$\int_0^\infty y^{-1}(\ln y)^2 e^{-\ln y}dy$,我们可以采用分部积分法。设$u=(\ln y)^2$,$dv=y^{-1}e^{-\ln y}dy$,则$du=2\ln y\frac{1}{y}dy$,$v=-e^{-\ln y}=-y^{-1}$,代入得: $$\int_0^\infty y^{-1}(\ln y)^2 e^{-\ln y}dy=\left.-(\ln y)^2y^{-1}e^{-\ln y}\right|_0^\infty+2\int_0^\infty y^{-2}e^{-\ln y}dy=2\int_0^\infty e^{-x}dx=2$$ 因此,$Var(X)=\frac{\pi^2}{6}\beta^2$。 综上所述,Gumbel分布的密度函数为$f(x)=\frac{1}{\beta}e^{-(x-\mu)/\beta}e^{-e^{-(x-\mu)/\beta}}$,分布函数为$F(x)=e^{-e^{-(x-\mu)/\beta}}$,期望为$E(X)=\mu-\gamma\beta$,方差为$Var(X)=\frac{\pi^2}{6}\beta^2$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值