Stable Diffusion|AI字体+城市海报制作

今天分享一个“AI字体”的小教程,同时还会分享如何将“AI字体”与“城市标志性建筑”相结合来生成城市海报。

图片

图片

1

前期准备

插件安装

在开始之前,需要先安装“ControlNet”插件,并且下载“ControlNet”相关模型。(安装方法就不一一介绍啦,如果有任何疑问或问题可以在公众号后台私聊我)

**
**

字体

字体可以用网上的字体生成工具,或用“PS”、“Figma”等图片处理工具,导出一张字体的图片。背景建议用白底的,不要透明的。

图片

注意有的字体会有版权风险哦,如果没有版权,建议使用可商用字体。

2

AI字体

  1. 打开“Stable Diffusion”,“启用”ControlNet,并勾选“完美像素模式”,然后上传刚刚准备好的字体图片。

图片

  1. 在“控制类型”选择“Lineart”,然后预处理器选择“invert”,“控制权重”可以设置为“0.6-0.85”之间,这样效果会比较好。

图片

  1. 在“ControlNet Unit 1”,“启用”ControlNet,并勾选“完美像素模式”,然后再次上传刚刚准备好的字体图片。(这里也可以不设置,仅靠“ControlNet Unit 0”的“Lineart”效果其实也还不错)。

图片

  1. 在“ControlNet Unit 1”的“控制类型”选择“Tile”,然后预处理器选择“tile_resample”。如果在“Lineart”上“控制权重”调的比较高,那么在“Tile”这里可以稍微把控制权重参数调低一些,可以调到“0.4-0.6”之间效果会比较好。

图片

  1. ControlNet设置完成之后,选择一个大模型,然后输入正向提示词和反向提示词。

图片

这里我使用了两个Lora模型一个是“梦镜中国 | 国风无涯山水”,另一个是“新中式NewCnstyle”,这两个模型都可以在“liblib”模型站上下载。(在这里感谢两位模型作者的分享,谢谢!)

图片

图片

Lora模型可以根据自己想要生成的风格去搭配,这里我想生成的是国风的,所以我选了两个国风Lora模型。

  1. 设置生成参数。尺寸建议跟字体图片保持统一比例,其他的可以根据自己的需求设置。

图片

  1. 设置完以上参数之后,点击“生成”即可。可以尝试多生成几次,如果生成的都不太满意,可以调整一下Lora权重、ControlNet模型或权重、正向提示词等等。

图片

图片

图片

3

城市海报

开始之前,需要先准备两张图片,一张城市照片加文字,可以用图片处理工具加上文字然后导出,另一张只需要文字就可以,然后用单色背景就可以。

图片

(照片来自Unplash(Ming Han Low),如有侵权,请联系我删除,谢谢)

图片

  1. 准备好以上两张图片之后,打开Stable Diffusion,在“ControlNet Unit 0”点击“启用”ControlNet并且勾选“完美像素模式”,然后上传第一张城市的图片。

图片

  1. 控制类型可以选择“Lineart”或者“Canny”这两个都可以,效果感觉差不多。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  1. 在“ControlNet Unit 1”点击“启用”ControlNet并且勾选“完美像素模式”,然后上传第二张文字的图片。(这里可以更好地识别文字)

图片

  1. 这里的控制类型选择“Lineart”,然后预处理器选择“invert”。

图片

  1. 设置好“ControlNet”之后,根据自己想要生成的风格选择一个大模型,然后输入正向提示词和反向提示词。

图片

大模型我这里用了“revAnimated”,然后使用了两个Lora模型一个是“梦镜中国 | 国风无涯山水”,另一个是“新中式NewCnstyle”,跟AI字体用的是同样的Lora,这两个模型都可以在“liblib”模型站上下载。(在这里感谢两位模型作者的分享,谢谢!)

图片

图片

  1. 设置生成参数。尺寸建议跟字体图片保持统一比例,其他的可以根据自己的需求设置。

图片

  1. 设置完成之后,点击“生成”即可。

图片

图片

图片

我们可以看到效果还是很不错的,但是可能跟实际的照片还是会有一些差距。

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

1.stable diffusion安装包 (全套教程文末领取哈)

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

<think>嗯,用户想安装Stable Diffusion的DPM++ 2M Karras采样器。首先,我需要确认用户使用的是哪个平台,比如Automatic1111的WebUI还是ComfyUI。因为不同的平台安装步骤可能不同。 根据引用[4],Stable Diffusion的采样器通常集成在WebUI中,比如Automatic1111的版本。所以可能用户需要先确认他们的WebUI版本是否已经包含这个采样器。如果已经更新到最新版,可能DPM++ 2M Karras已经存在了。比如引用[1]提到DPM++2M Karras是其中一个系列,可能属于内置的采样器。 那用户可能需要先更新他们的WebUI。步骤大概是进入安装目录,运行git pull命令。如果有扩展管理器的话,可能还需要更新扩展。不过,如果DPM++ 2M Karras属于核心的一部分,可能不需要额外安装,只需要确认版本是否支持。 另外,引用[3]提到DPM-Solver++需要高阶求解器,可能某些实现需要额外的依赖库,比如xformers或者CUDA工具包。用户可能需要安装这些依赖项,但如果是通过WebUI安装的话,可能已经包含这些了。 也有可能用户遇到问题,比如采样器没有显示出来,这时候需要检查日志或者重新安装依赖。或者,如果是自定义的采样器,可能需要从GitHub下载代码,但根据引用[4],DPM++系列可能已经集成在主流UI中,不需要额外安装。 总结步骤应该是:1. 更新WebUI到最新版;2. 检查可用采样器列表;3. 如果找不到,可能检查扩展或重新安装依赖;4. 测试采样器是否正常工作。同时,注意用户是否需要特定的配置,比如Karras调度器,这在引用[2]中提到可能需要选择正确的调度方式。</think>### Stable Diffusion DPM++ 2M Karras 采样器安装指南 #### 1. 确认基础环境 - **Stable Diffusion WebUI 版本**:DPM++ 2M Karras 采样器通常集成在主流 WebUI 中(如 **Automatic1111** 或 **ComfyUI**)。需确保 WebUI 已更新至最新版本[^3][^4]。 - **依赖库检查**:若使用原生代码库,需安装 `xformers` 和 `torch` 等依赖,可通过以下命令更新: ```bash pip install -U xformers torch ``` #### 2. 安装/更新步骤 - **Automatic1111 WebUI**: 1. 进入 WebUI 根目录,运行更新命令: ```bash git pull ``` 2. 若使用扩展管理器,更新所有扩展: ```bash ./webui.sh --update-all-extensions ``` 3. 重启 WebUI,在采样器下拉菜单中检查是否出现 `DPM++ 2M Karras`[^1][^4]。 - **ComfyUI**: 1. 通过 `Manager` 更新自定义节点: ```bash git clone https://github.com/comfyanonymous/ComfyUI ``` 2. 安装 `DPM-Solver++` 相关节点(若需手动集成)。 #### 3. 验证与使用 - **采样器调用**:在生成图像的参数设置中,选择 `DPM++ 2M Karras`,建议参数: ```python { "steps": 20, # 推荐15-20步 "cfg_scale": 7.5, # 引导尺度(参考引用[3]) "scheduler": "karras" # Karras调度器[^2] } ``` - **性能测试**:生成图像时观察显存占用与速度,若出现异常可尝试 `--no-half` 启动参数。 #### 4. 常见问题解决 - **采样器未显示**:检查 WebUI 版本是否≥1.6.0,或尝试重装 `k-diffusion` 库: ```bash pip install -U k-diffusion ``` - **显存不足**:降低图像分辨率或启用 `--medvram` 模式。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值