SDXL 最强线条控制模型:MistoLine,一键搞定所有线条艺术。

关于 stable diffusion,我们知道 SD1.5 版本是有很多的 ControlNet 模型的,ControlNet 作为 SD 的一个不可或缺的插件,主要用来控制和调节我们最终的出图效果,让我们不需要深埋抽卡的痛苦中无法自拔。

但是 SDXL 版本出来以后,虽然后续也有更新支持 SDXL 版本的 ControlNet 的模型,但是效果总感觉差些意思!

不过技术总是在发展的,优秀的模型早晚会和我们遇见。这里还是要提一嘴,开源万岁!

好了,我们开始介绍今天的主人公:MistoLine,MistoLine 是一个 SDXL-ControlNet 模型,可以适应任何类型的艺术线条输入,并且保持高精度和出色的稳定性。

不需要像其他模型一样选择预处理器,直接使用即可。

好了,话不多说,我们直接开整。


首先说一下,MistoLine 在 WebUI 和 ComfyUI 中都是支持的。

不过我们就选一种方式介绍了,实际操作其实蛮简单的,我们主要来看看效果。

体验之前,需要先下载 MistoLine 模型,小伙伴们直接在文末的网盘获取就可以了,放入 ControlNet 文件夹下。

\sd-webui\models\ControlNet 或者 \ComfyUI\models\controlnet

模型分为两个,一个是 mistoLine_fp16,还有一个是 mistoLine_rank256。

按官方的意思是 mistoLine_rank256 的效果要优于 mistoLine_fp16,听雨实测下来的感觉也是这样的。

所以小伙伴们可以只下载 mistoLine_rank256,mistoLine_fp16 模型反而更大,也是奇怪了,内存占用感觉 mistoLine_rank256 更小一些,不过出图速度感觉 mistoLine_fp16 更快一些。

使用基础的 ControlNet 工作流就可以了,工作流也会放在文末的网盘里。

img

不过这里需要说一下,官方对于采样器中的参数有推荐配置。

工作流中的配置就是官方的推荐配置,小伙伴们直接用就行。

当然也不是绝对的哈,如果没有找到合适的配置就用官方这一套。

img

结束时间设置:0.9。

img

接下来我们就来试试 MistoLine 的效果如何!

听雨这里选择了一个 sdxl 的动漫大模型:animaPencilXL_v100

上传一张彩色的图片,提示词:1girl

可以看到,人物以及整体构图迁移的相当完美。

img

当然,如果我们不想要随机出图,我们可以在提示词中进行体现,提示词越详细,出图越符合我们的要求。

提示词:An illustration of a little girl with platinum blonde hair, wearing cool and high-quality clothes, with starry eyes, detailed and intricate, set against a starry night sky.

img

直接上传线稿图进行上色也是相当轻松,偷个懒,用的还是上边的提示词。

img

给衣服上色。

img

再来个复杂点的,给家具设计图上色。

img

不同类型的线稿都可以支持。

img

好了,今天的分享就到这里了,感兴趣的小伙伴快去试试吧!

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

当您在搭建深度学习模型时,遇到 `mat1` 和 `mat2` 形状无法相乘的问题,这通常意味着这两个张量(矩阵)在维度上不匹配,不能直接做元素级别的乘法操作。解决这个问题可以按照以下几个步骤尝试: 1. **检查形状**:查看 `mat1` 和 `mat2` 的形状 (`shape`),确认它们是否期望的维度一致,比如一个是 (batch_size, height, width, channels) 形式,另一个也是同构的。 2. **广播规则**:如果两个矩阵在某些维度上大小不同,但可以通过广播(broadcasting)规则进行扩展,那么可以尝试调整其中一个或两者以便能相乘。例如,如果一个是一维向量而另一个是二维矩阵,你可以将其扩展为二维向量。 3. **检查函数参数**:确认你在调用深度学习库(如PyTorch或TensorFlow)的乘法操作时,传入的参数是否正确对应了运算需求。有些函数需要输入张量具有特定的形状才能相乘,例如,对于卷积层(Conv2d),它们的输入和权重可能是不完全相同的形状,但通过填充或切片可以调整。 4. **错误提示**:仔细阅读错误的具体信息,有时候它会指出哪部分导致了这个错误,或者提供如何修复的建议。 5. **查阅文档**:查阅相关的API文档或官方教程,看是否有特殊的规则或例子说明这种情况下的处理方式。 6. **代码审查**:最后,检查其他部分的代码,确保没有无意中影响到这两个张量的计算过程。 如果你已经做了上述检查还是无法解决问题,提供具体的代码段和详细的错误信息将有助于更好地定位问题所在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值