【stable diffusion模型】首个中文Stable Diffusion模型开源

前言

生成内容一直被视为 AI 领域中最具有挑战性的能力,最近大火的 AI 绘画背后,是 Stable Diffusion 模型的开源,催生了众多 AI 绘画的应用,得益于 Stability AI 的开源精神,这一创变推动了整个以英文为主的下游文生图生态的蓬勃发展。

然而在国内,目前大部分团队主要是基于翻译 API + 英文 stable diffusion 模型进行开发,但由于中英文之间所得存在文化差异导致遇到中文独特的叙事和表达时,这种模型就很难给出正确匹配的图片内容。因此,IDEA 研究院认知计算与自然语言研究中心(IDEA CCNL)开源了第一个中文版本的 stable diffusion 模型“太乙 Stable Diffusion”,让中文的世界真正拥有具备中国文化内核的 AIGC 模型。

  • 太乙 Stable Diffusion 纯中文版本:https://huggingface.co/IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-v0.1

  • 太乙 Stable Diffusion 中英双语版本:https://huggingface.co/IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-EN-v0.1

中文运笔,意境浮现

君不见黄河之水天上来 ,唯美,油画

滔滔江水,连绵不绝 ,唯美,插画

飞流直下三千尺 ,唯美,插画

长城,清晨,朦胧,唯美,插画

梦回江南,中国古代小镇,唯美,插画

云南苗家古寨,原始森林,鸟语花香,唯美,插画

中国的未来城市,科幻插画

中文 vs 英文的图片生成

中文指导的特定风格生成

小桥流水人家,水彩

(Taiyi-Stable-Diffusion-1B-Chinese-EN-v0.1)

小桥流水人家,Van Gogh style

(Taiyi-Stable-Diffusion-1B-Chinese-EN-v0.1)

太乙系列文本生成图像模型技术揭秘

第一个开源中文 CLIP 模型

2022 年 7 月,IDEA CCNL开源了第一个中文 CLIP 模型,目前已经有 4 个版本。

  • Taiyi-CLIP-Roberta-102M-Chinese:https://huggingface.co/IDEA-CCNL/Taiyi-CLIP-Roberta-102M-Chinese

  • Taiyi-CLIP-Roberta-large-326M-Chinese:https://huggingface.co/IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese

  • Taiyi-CLIP-RoBERTa-102M-ViT-L-Chinese:https://huggingface.co/IDEA-CCNL/Taiyi-CLIP-RoBERTa-102M-ViT-L-Chinese

  • Taiyi-CLIP-RoBERTa-326M-ViT-H-Chinese:https://huggingface.co/IDEA-CCNL/Taiyi-CLIP-RoBERTa-326M-ViT-H-Chinese

以 Taiyi-CLIP-Roberta-large-326M-Chinese 为例,IDEA CCNL用中文语言模型替换了开源的英文 CLIP 中语言编码器,在训练过程中冻结了视觉编码器并且只微调这个中文语言模型,在 1 亿级别的中文数据上训练了 24 个 epoch,一共过了约 30 亿中文图文数据,得到了这个包含图片信息的中文表征语言模型,为后续训练中文 Diffusion 相关的模型奠定了重要的基础。

第一个开源中文 Disco Diffusion 模型

2022 年 10 月,IDEA CCNL开源了第一个中文 Disco Diffusion 模型 Taiyi-Diffusion-532M-Nature-Chinese,该模型由 Katherine Crowson’s 的无条件扩散模型在自然风景图上微调而来。结合 Taiyi-CLIP-Roberta-large-326M-Chinese 可以实现中文生成各种风格的风景图片。

东临碣石,以观沧海,水何澹澹,山岛竦峙:

第一个开源中文 Stable Diffusion 的模型

2022 年 11 月,IDEA CCNL开源了第一个中文 Stable Diffusion 的模型和中英双语 Stable Diffusion 模型。

  • 太乙 Stable Diffusion 纯中文版本(Taiyi-Stable-Diffusion-1B-Chinese-v0.1)

该模型利用已经开源的太乙 CLIP 模型 (Taiyi-CLIP-RoBERTa-102M-ViT-L-Chinese) 替换了英文 stable-diffusion-v1-4 中的语言编码器,因为太乙 CLIP 模型已经具备了很强的中文图文概念,所以直接冻结英文 stable diffusion 的生成模型部分,在亿级别的高质量数据上微调语言编码器,调整学习率等超参数,将太乙 CLIP 模型理解的中文图文概念与 stable diffusion 生成能力对齐。

  • 太乙 Stable Diffusion 中英双语版本(Taiyi-Stable-Diffusion-1B-Chinese-EN-v0.1)

不同于太乙 Stable Diffusion 纯中文版本,这个模型希望在支持中文的情况下,同时能保留 stable-diffusion-v1-4 的英文生成能力。由于 stable-diffusion-v1-4 原有语言模型不具备太乙 CLIP 模型强大的中文图文概念,IDEA CCNL希望在它的基础上增加了中文数据训练,这里采取了两阶段的训练。第一阶段也是冻住 stable-diffusion-v1-4 的生成模型部分,在亿级别的高质量数据上微调语言编码器,调整学习率等超参数,训练语言模型中文部分的表征。第二阶段放开 stable-diffusion-v1-4 的生成模型部分,增强中文引导图片生成的能力,目前训练中的一个 checkpoint 已取得不错的效果并进行了开源。

使用方法

如果需要进行古诗场景、中文概念生成,建议尝试中文版本 Taiyi-Stable-Diffusion-1B-Chinese-v0.1。如果需要一些通用场景和概念的生成,尤其是有中文混合英文需要,建议尝试中英双语版本 Taiyi-Stable-Diffusion-1B-Chinese-EN-v0.1。

中文版本:

中英双语版本:

太乙 - 中文 Stable Diffusion 的未来

目前在庞大的中国市场中,有将近 10 亿的文化产业正在被 AIGC 冲击并快速创新发展,也有更多的新机遇在裂变中产生。由于此前的 AIGC 模型还无法和特殊的中国文化背景相结合,致力于成为中文认知智能的基础设施的 IDEA 研究院认知计算与自然语言中心,希望通过推出太乙模型,助力加快在 AIGC 全球市场化中中国的文化产业数字化转型的创新发展,促进各个相关行业的升级。而太乙所在的封神榜预训练模型开源体系,已经开源 80 个模型,覆盖 AIGC、自然语言理解、受控文本生成等多个领域,成为中文最大的预训练模型开源体系。基于封神榜模型的 GTS 模型生产平台,自动生产的 1 亿参数模型,击败众多百亿千亿参数模型,进入 FewCLUE 榜单前三名,机器自动化生成模型的能力达到了算法专家水平,AI 生产 AI 的时代正在到来。

IDEA CCNL认为,在 AIGC 中,人的作用是更为重要的,生成式 AI 应悄无声息地融入大众生活中并更好地帮助拓展人类的想象力边界。所以,与 AI 互动生产的内容,是帮助AIGC走向下一个生产力阶段的关键。因此,IDEA CCNL除了基础模型和基础算法的研究之外,还在研究更精准的文本生成和基中文于文本的交互式图片编辑。以太乙为核心的 AIGC 模型会持续更新和升级,敬请期待。

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

1.stable diffusion安装包 (全套教程文末领取哈)

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍代码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入门stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

### Stable Diffusion Model Websites 对于希望获取Stable Diffusion模型的用户而言,有多个平台提供了不同版本和变体的下载以及在线体验服务。以下是几个知名的网站: #### Hugging Face Hugging Face是一个大型社区驱动型平台,在这里可以找到由开发者贡献的各种机器学习模型,包括众多基于Stable Diffusion框架构建而成的作品。该站点不仅限于提供预训练好的权重文件,还支持直接通过网页界面运行推理测试。 #### Civitai Civitai专注于AI艺术创作领域,特别是图像生成方面的工作。除了分享高质量的艺术作品外,也托管了许多优秀的Stable Diffusion实现及其衍生项目。用户能够浏览到丰富的案例研究和技术文档,有助于深入了解如何有效利用这类工具进行创意表达[^3]。 #### GitHub Projects GitHub上存在大量开源性质的Stable Diffusion相关工程库,例如Awesome-Talking-Head-Synthesis这样的持续更新中的项目欢迎Pull Requests来完善其内容。这表明了围绕着这一技术存在着活跃的研发活动,有兴趣深入探究或参与改进工作的个人可以通过这种方式加入进来并作出贡献[^2]。 ```python import requests def fetch_model_from_huggingface(model_name): url = f"https://huggingface.co/models/{model_name}" response = requests.get(url) if response.status_code == 200: print(f"Model {model_name} found on HuggingFace.") else: print("Failed to locate the specified model.") fetch_model_from_huggingface('runwayml/stable-diffusion-v1-5') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值