很多人纠结lora训练用谁的脚本比较好,比如kohya_ss的、秋葉aaaki的、赛博炼丹炉的……
昨天我看了下kohya_ss的,感觉界面还是有点复杂,所以我还是最推荐秋叶的,秋叶也是用的kohya的脚本集成的,现在更新到最新版本,就可以训练SDXL模型的lora了。
感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。
需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

想训练SDXL的模型,首先要调到专家模式,然后从上到下讲一下我的设置。
第一行模型种类的选项,选择sdxl-lora就可以了。
底模路径写好,选择SDXL的底模,我没有用VAE。
训练路径写好,比如我的训练路径是./train/star9,那么star9下应该包含20_star9的文件夹,在文件夹下才是我的图片和标签。
注意,训练SDXL的图片要是1024*1024的。
bucket_reso_steps这个设置,提示SDXL可以用32的,我就调成了32。
保存设置,这里我的模型保存精度选择bf16:
因为我训练的精度也选的是bf16,速度优化选项里可以看到:
如果显存小点,16G的话选择fp16就行。
训练相关参数没改啥,一般我都是step20,epoch10。
如果显存小,也可以只训练unet试试。
优化器选择的经验,我之前在纯小白想开训lora?参数设置看这一篇就够用了这里讲过DAdaptation,而Prodigy是DAdaptation的升级版,它会随着步数增加寻找最优的学习率。
所以在学习率优化器设置里,把学习率都设置为1,学习率调度器选择constant,优化器设置为Prodigy。
其他的,可以把网络维度改成64,再高就不需要了。如果dim是32,出来的lora模型是217MB,如果是64,出来的是435MB。
其他就不用改了,一键开训就行,然后我的显存占用就变成了这样:
今天只是教大家用神童优化器这个方法,用了它你会发现损失降了~
但是!这个数据集里有几张照片是糊的,所以这个版本学出来也是糊的,最后的结果还不如我用lr调度器cosine_with_restarts、优化器AdamW8bit,dim32,损失值在0.1的效果好……
也就是紫色线那次训练,其实出图效果很不错,而且XL模型根本都不用AD修脸,直出就很绝。
很多时候,不必太纠结于损失降没降,因为过低的损失可能就是过拟合了,尤其是你数据集有问题的时候,脏数据就直接把训练方向带偏了。
反而是默认优化器和学习率,训练出的效果更好。
今天训练的不是我的照片,所以没有出图结果。改天训了自己的脸再放出图吧。
关于AI绘画技术储备
学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!
感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。
需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
