Office 2016卸载以及Office2021安装

一、起因

Office 2016未有平滑过渡功能,但是不想下载wps,实验软件资源中有Office 2021安装包,故打算彻底卸载Office 2016,安装Office 2021。

二、卸载2016

1. 网上看了一下,在“控制面板\程序\程序和功能”的“卸载或更改程序”中,没找到Office,故选择Microsoft的手动卸载Office的文章。

手动卸载 Office - Microsoft 支持

2. 一步步跟下来即可。以下是遇到的一些问题:

2.1

C:\Program Files\中没有“Microsoft Office 16”文件夹,有①“Microsoft Office”文件夹、②“Microsoft Office 2015”文件夹和③“Microsoft OfficePLUS”文件夹。我从PowerPoint快捷方式中找到安装目录应该是“Microsoft Office”文件夹,故删除。删除过程中多次出现删不干净情况,多重启电脑几次即可(重启后尽量不干别的,先删文件【】)。 

2.2

“ClickToRun”文件夹删不掉,解决方法仍是重启电脑(此处Microsoft亦有讲解)。

2.3

注册表删除中,首先要做好备份工作(重要)。问题:步骤三中“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall”目录下,没有“Microsoft Office <版本> - en-us”,且无法删除“HKEY_CURRENT_USER\Software\Microsoft\Office”目录,因为其中一项删不掉。上网查到以下解决方法:注册表编辑器删除时出错 (lw881.com)

尝试解决,遇到如下问题:第6点不知道在哪勾选每个人的完全控制权限,最后在高级安全设置界面的提示下,找到是在双击“Everyone”后,勾选“完全控制”。

但是没用,双击“Everyone”后,将“Everyone”的类型改为允许。然后就可以删掉了。于是“Office”也删掉了。

剩下的也按照文章操作即可,至此,卸载完成。(虽然有点瑕疵)。

二、安装Office

按照说明,office完成新版Office的安装即可。其中的几个小问题:

1. iSlide好像不一定要装

2. 我选择的版本是2021,但安装过程中,突然有一刻某个提示框显示我即将安装的版本号是16.0.其他,我当时觉得不对,就点了取消,但好像并没有影响它的安装,它还在继续。

3.继续过程中,如果感觉Office安装的进度条长时间不动,其实可能是正常现象,一会儿之后就安装完成了,我差点因此将安装软件停止运行,幸好没有选择这样做,不然不知道又会发生啥。

三、结语

能跟着做下来我还挺厉害的。

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值