如何求逆元?

本文介绍了逆元的概念及其在编程中的应用,重点讲解了使用拓展欧几里得算法和快速幂(结合费马小定理)求逆元的方法,以及存在的条件。适合初学者了解逆元计算技术在处理模运算中的作用。
摘要由CSDN通过智能技术生成

1.何为逆元?


a\times b\equiv 1(mod \, p)

即为在mod 意义下,a,b 互为逆元;


逆元有什么用?

在做编程题的时候,我们无法让计算机直接除以一个数得出精确值,尤其这个数要代入下面的运算中去比如 \mathbf{\frac{x}{a}}(尤其在求组合数的时候) , 这时候我们就可以用逆元来解决,把他转化为b \times x (mod p);

2.如何求逆元?


1.使用拓展欧几里得算法求逆元;

a \times b=1(mod p) \Rightarrow a \times b+k\times p=1;

通过上面的转化转化成了拓展性欧几里得问题:

拓展性欧几里得代码如下:

int exgcd(int a,int b,int& x,int &y)
{
    if(!b)
    {
        x=1,y=0;
        return a;
    }
    int d=exgcd(b,a%b,y,x);
    y-=(a/b)*x;
    return d;
}

这样子我们就求出了b的值!

注意!:存在逆元的条件为a,p是互为素数(gcd(a,p)=1),所以我们还需要返回d(d=gcd(a,p))来检验是否存在逆元!

LL exgcd(LL a,LL b,LL &x,LL &y) 
{
	if(b==0)
	{
		x=1,y=0;
		return a;
	}
	LL ret=exgcd(b,a%b,y,x);
	y-=a/b*x;
	return d;
}
LL getInv(int a,int mod)//判断是否存在逆元,不存在返回-1;
{
	LL x,y;
	LL d=exgcd(a,mod,x,y);
	return d==1?(x%mod+mod)%mod:-1;
}

2.使用快速幂+费马小定理求逆元


1.使用条件

mod 的 p 为素数才可以用,不然只可以用上面的方法


2.求a的逆元

1.费马小定理:a^{p-1}\equiv 1,(p为素数)

 \because a^{p-1}\equiv 1(mod\, p)\therefore a^{p-2}\times a\equiv1(mod p)

所以a^{p-2}就是a的逆元(在mod p意义下);


那怎么求a^{p-2}呢,用快速幂 

LL qmi(int a,int b,int p)
{
    LL res=1%p;
    while(b)
    {
        if(b&1)res=res*a%p;
        a=a*(LL)a%p;
        b>>=1;
    }
    return res;
}

结束语:

欢迎大佬提建议!(初学!)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值