RAPTOR入门指南 - 基于递归树结构的高效文本检索与问答系统

RAPTOR简介 🌳

RAPTOR (Recursive Abstractive Processing for Tree-Organized Retrieval) 是一种新型的检索增强语言模型,通过构建文档的递归树结构来实现高效的信息检索。这种方法能够更好地处理大规模文本,并提供更精准的上下文感知能力,有效解决了传统语言模型的一些局限性。

RAPTOR示意图

快速入门 🚀

要开始使用RAPTOR,请按照以下步骤操作:

  1. 确保安装Python 3.8+
  2. 克隆RAPTOR仓库并安装依赖:
git clone https://github.com/parthsarthi03/raptor.git
cd raptor
pip install -r requirements.txt
  1. 设置OpenAI API密钥并初始化RAPTOR:
import os
os.environ["OPENAI_API_KEY"] = "your-openai-api-key"

from raptor import RetrievalAugmentation
RA = RetrievalAugmentation()
  1. 添加文档并开始使用:
with open('sample.txt', 'r') as file:
    text = file.read()
RA.add_documents(text)

question = "How did Cinderella reach her happy ending?"
answer = RA.answer_question(question=question)
print("Answer: ", answer)

核心功能 💡

  • 文档索引: 将文本文档添加到RAPTOR的树结构中
  • 问答系统: 基于索引的文档回答问题
  • 树结构保存与加载: 保存和加载构建好的树结构
  • 自定义模型集成: 支持集成自定义的摘要、问答和嵌入模型

进阶使用 🔧

RAPTOR的灵活设计允许用户集成自定义模型:

  • 自定义摘要模型: 继承BaseSummarizationModel
  • 自定义问答模型: 继承BaseQAModel
  • 自定义嵌入模型: 继承BaseEmbeddingModel

详细的使用示例可以在项目的demo.ipynb文件中找到。

学习资源 📚

  1. RAPTOR论文: 深入了解RAPTOR的理论基础和实现细节
  2. GitHub仓库: 源代码、文档和示例
  3. 示例notebook: 包含使用Llama/Mistral/Gemma等模型的实例

贡献与支持 🤝

RAPTOR是一个开源项目,欢迎社区贡献。无论是修复bug、添加新功能还是改进文档,您的帮助都将受到赞赏。项目使用MIT许可证发布。

如果RAPTOR对您的研究有所帮助,请按以下格式引用:

@inproceedings{sarthi2024raptor,
    title={RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval},
    author={Sarthi, Parth and Abdullah, Salman and Tuli, Aditi and Khanna, Shubh and Goldie, Anna and Manning, Christopher D.},
    booktitle={International Conference on Learning Representations (ICLR)},
    year={2024}
}

更多示例、配置指南和更新,请持续关注RAPTOR的GitHub仓库。🌟

文章链接:www.dongaigc.com/a/raptor-introduction-guide-recursive-tree-text-retrieval

https://www.dongaigc.com/a/raptor-introduction-guide-recursive-tree-text-retrieval

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值