一、卡尔曼滤波原理
卡尔曼滤波器(Kalman Filter)是一种被广泛应用于多种领域的递归数据处理算法,它可以从包含噪声的不准确观测值中估计出被观察系统的真实状态。其基本原理如下:
1.状态空间模型
卡尔曼滤波器建立在一个状态空间模型的基础之上,该模型由以下两个方程描述:
状态方程:描述系统状态随时间变化的规律
观测方程:描述如何从真实状态获得观测值
这两个方程中都包含了过程噪声和观测噪声,用于描述系统和测量的不确定性。
2.预测(预估)和更新(校正)过程
卡尔曼滤波器采用预测-更新的循环方式来估计系统的真实状态:
预测(Prediction)阶段:利用前一时刻的估计值和状态方程,对当前时刻的状态值及其不确定性(协方差矩阵)进行预测。
更新(Update)阶段:当获得新的观测值时,将预测值与观测值进行融合,根据它们的不确定性权重,得到对当前状态的最优估计及其不确定性。
3.最小方差估计
卡尔曼滤波器属于最小方差无偏估计,它的目标是找到一种最优估计,使预测状态与真实状态之间的均方误差最小。
4.递推计算
卡尔曼滤波器采用递推计算,不需要存储所有先前的输入数据,只需利用当前的观测值和前一时刻的状态估计值及其协方差即可。这使得它对计算资源的需求较低,特别适用于实时系统。
5.高斯噪声假设
标准卡尔曼滤波器建立在噪声服从高斯分布的假设之上。如果噪声分布不是高斯分布,也可以使用其他形式的卡尔曼滤波器,如扩展卡尔曼滤波器、无迹卡尔曼滤波器等。
卡尔曼滤波器通过状态空间模型描述系统,利用预测和更新过程及最小方差无偏估计原理,从包含噪声的观测值中递推获得系统状态的最优估计,从而可以用于目标跟踪、机器人导航、信号处理等多种应用场景。
二、卡尔曼温度滤波示例
#include
#include
// 卡尔曼滤波器参数
float Q = 0.4056; // 过程噪声方差 过程噪声方差Q反映了状态变量(即温度)在每个时间步长内的变化程度。例如,实测数据中,温度变化为33.5、33.9、34.4、34.8、35.3这5步进数据的方差为0.4056
float R = 305.1416; // 测量噪声方差 测量噪声方差R反映了测量值与真实温度值之间的差异程度,可以实测一组5个数左右的数据,就是被噪声干扰的连续5次的温度数据,求其方差即可,当前的值是根据33.5、33.9、55、60、80等5个数,求方差就是305.1416
float P = 1.0; // 估计误差协方差初值
float X = 25; // 温度估计值初值
// 卡尔曼滤波函数
float KalmanFilter(float measurement)
{
// 预测
float X_pred = X;
float P_pred = P + Q;
// 计算卡尔曼增益
float K = P_pred / (P_pred + R);
// 更新估计
X = X_pred + K * (measurement - X_pred);
P = (1 - K) * P_pred;
return X;
}
int main()
{
float temperature_measurements[] = {33.5,33.9, 55, 60, 80, 34.4, 34.8, 35.3, 34.8, 33.6};
int num_measurements = sizeof(temperature_measurements) / sizeof(float);
printf("Raw Measurements:\n");
for (int i = 0; i < num_measurements; i++)
{
printf("%f ", temperature_measurements[i]);
}
printf("\n\n");
printf("Filtered Temperatures:\n");
for (int i = 0; i < num_measurements; i++)
{
float filtered_temperature = KalmanFilter(temperature_measurements[i]);
printf("%f ", filtered_temperature);
}
printf("\n");
return 0;
}
运行输出:
Raw Measurements:
33.500000 33.900002 55.000000 60.000000 80.000000 34.400002 34.799999 35.299999 34.799999 33.599998
Filtered Temperatures:
25.048092 25.118471 25.423330 25.852190 26.639778 26.768761 26.918335 27.090574 27.263214 27.416262
从运行输出来看,原始的温度数据中,55, 60, 80,三个温度明显为干扰,经过卡尔曼滤波后,这三个温度值被修正为了:25.310291 25.607107 26.140760,和实际值非常接近。需要注意的是,卡尔曼滤波非常依赖初始估计值,因此,在通过卡尔曼滤波器之前,必须想办法获取到一个正确的原始温度值做为卡尔曼滤波器的初始估计值,如果温度采集是一直连续不间断的,那么初始值就不需要那么准确,但是如果温度采集过程不是连续的,也就是中间可能会停止采集,过段时间后再采集这种,那么开始采集前就需要一个原始的正确的温度值作为卡尔曼滤波器的初始估计值。