VAR(向量自回归):多变量时间序列分析的基石

VAR(向量自回归):多变量时间序列分析的基石

一、引言

1.1 问题背景

在现代数据分析中,多变量时间序列分析已成为理解复杂系统动态特征的关键工具。以下是一些典型应用场景:

  1. 宏观经济分析

    • GDP、通货膨胀率、失业率的相互影响
    • 货币政策传导机制研究
    • 国际贸易关系分析
  2. 金融市场研究

    • 多个市场指数的联动关系
    • 不同资产类别的收益率相关性
    • 金融风险的传染效应
  3. 供应链管理

    • 多个产品的需求预测
    • 库存水平的动态优化
    • 价格-需求关系分析
  4. 环境科学

    • 多个监测站点的污染物浓度
    • 气象要素的相互作用
    • 生态系统的动态平衡

传统的单变量时间序列模型(如ARIMA)无法刻画变量间的动态相互作用,而VAR模型则提供了一个系统性的解决方案。

1.2 算法概述

VAR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值