VAR(向量自回归):多变量时间序列分析的基石
一、引言
1.1 问题背景
在现代数据分析中,多变量时间序列分析已成为理解复杂系统动态特征的关键工具。以下是一些典型应用场景:
-
宏观经济分析
- GDP、通货膨胀率、失业率的相互影响
- 货币政策传导机制研究
- 国际贸易关系分析
-
金融市场研究
- 多个市场指数的联动关系
- 不同资产类别的收益率相关性
- 金融风险的传染效应
-
供应链管理
- 多个产品的需求预测
- 库存水平的动态优化
- 价格-需求关系分析
-
环境科学
- 多个监测站点的污染物浓度
- 气象要素的相互作用
- 生态系统的动态平衡
传统的单变量时间序列模型(如ARIMA)无法刻画变量间的动态相互作用,而VAR模型则提供了一个系统性的解决方案。
1.2 算法概述
VAR