开源AI模型落地教程:如何在个人电脑安装并运行QwQ-32B大模型

前言

最近,千问团队在AI圈里扔下了一枚超级炸弹——全新推理模型QwQ32B!这款仅有320亿参数的小巨人,竟然能和那些动辄数千亿参数的巨头们一决高下。官方数据显示,在多个基准测试中,它与deepseek-R1这样的顶级选手打成了平手,简直让人不敢相信自己的眼睛!为了验证这颗小巨人的真正实力,我决定在自己的Windows电脑上亲自体验一番,看看这位新星到底有没有那么神奇。让我们一起揭开QwQ32B的神秘面纱吧~

QQ20250306-144516.png

1. 环境准备

QwQ-32B 因参数量少,大幅降低了部署成本,支持消费级显卡(如Nvidia RTX 系列)运行,甚至能在苹果笔记本上部署,适合个人开发者或中小型企业使用。一张 RTX3090 或者 RTX4090 就可以把这个模型的量化版跑起来了,我这里使用的是Windows11操作系统,12G RTX3060显卡,简单测试一下能不能跑起来。

然后通过Ollama运行QwQ32B模型,之前曾经发布过如何在Windows安装Ollama的教程,有需要的同学可以看看这篇文章:Windows本地部署Deepseek-R1大模型并使用Web界面远程交互

【视频教程】

千问QWQ-32B本地部署!媲美满血版deepseek-r1 671b

2.QwQ 32B模型安装与运行测试

首先访问Ollama的官网:Download Ollama on Windows

可以看到,很快啊,QwQ 32B刚发布就已经支持了,而且排在第一个,下边是deepseek-r1:

image-20250307112159233

Ollama安装完成之后,就可以开始去下载 QwQ32B 这个模型了,使用这个命令就能下载:

ollama run qwq

image-20250307113312147

image-20250307113605725

需要预留20个G以上的储存空间,默认下载到C盘,如果想修改下载位置,可以在终端中执行下方命令来指定模型文件的存放目录,这里以d:\ollama为例,大家可以自定义:

set OLLAMA_MODELS=d:\ollama

下载中,时间有点长,等待进度条完成即可:

image-20250307113710153

image-20250307140953287

安装成功后会提示success,并可以进行提问了:

image-20250307141047982

经过测试,在我这个纯家用级配置的电脑上推理过程和回答过程大概3-4个tokens/s,基本能用,相信如果是3090或者4090的话速度会更快。而且回答的质量也不错,大家稍后也可以自己测试一下。

image-20250307142442126

逻辑分析题目测试:

image-20250307143224391

在推理回答过程中,CPU、内存、GPU利用率情况:我这里使用的是12G RTX3060,GPU内存几乎占满,导致CPU和内存利用率较高。

image-20250307144448150

image-20250307145951337

3. 安装Open WebUI图形化界面

现在我们已经能够在本地Windows电脑上正常使用千问QWQ32B进行聊天了,但在命令行中对话可能不是很美观,在复制回答时也不太方便,我们可以通过安装一个图形化界面来解决这个问题。

本教程以Open WebUI这个项目为例,使用Docker进行安装,它的界面和平时在网页中和其他大模型聊天非常相似。当然,大家也可以选择其他的WebUI。

我们在Windows系统中需要使用Docker来部署Open WebUI,如果大家之前未安装过Docker,可以参考下方教程进行Docker安装Docker安装——Linux、Windows、MacOS

3.1 安装Open WebUI

然后访问Open WebUI的github页面 https://github.com/open-webui/open-webui

可以看到,如果你的Ollama和Open WebUI在同一台主机,那使用下面显示的这一行命令在cmd终端中就可以在本地快速进行部署:

image-20240412140749937

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

将上边在Docker中部署Open WebUI的命令复制后粘贴到终端中,回车:

image-20240412143603992

然后等待安装完毕即可:如下图所示:

image-20240412144132799

安装完成后,在Docker Desktop中可以看到Open WebUI的web界面地址为:https://localhost:3000

image-20240412144401182

点击后,会在浏览器打开登录界面:

image-20240412144744192

点击sign up注册,账号,邮箱,密码记好,下次登录时需要用到邮箱和密码登录:

image-20240412144927140

添加模型后就能在浏览器中使用web界面来和QWQ32B聊天了!

image-20250205162722922

3.2 添加QWQ32B模型

点击右上角的设置,可以修改当前界面的语言为简体中文:然后点击保存即可。

image-20240412145306289

image-20240412145337352

点击上方选择一个模型旁边的加号+可以增加大模型,点击下拉按钮可以选择当前使用哪一个已安装的模型,这里选择刚才安装的qwq:latest 32.8B,接下来就可以愉快的跟大模型在网页中聊天了!

image-20250307150334275

image-20250307151822186

到这里就成功在本地部署了QWQ32B模型并使用Open WebUI在网页中与AI交互,之后你可以根据自己的需求把它训练成自己专用AI助手啦。

4. 安装内网穿透工具

但如果想实现不在同一网络环境下,也能随时随地在线使用Open WebUI与本地部署的DeepSeek-r1大模型在网页中聊天,那就需要借助cpolar内网穿透工具来实现公网访问了!接下来介绍一下如何安装cpolar内网穿透,过程同样非常简单:

首先进入cpolar官网:

cpolar官网地址: https://www.cpolar.com

点击免费使用注册一个账号,并下载最新版本的cpolar:

image-20250307152003085

登录成功后,点击下载cpolar到本地并安装(一路默认安装即可)本教程选择下载Windows版本。

image-20240319175308664

cpolar安装成功后,在浏览器上访问http://localhost:9200,使用cpolar账号登录,登录后即可看到配置界面,结下来在WebUI管理界面配置即可。

img

接下来配置一下 Open WebUI 的公网地址:

登录后,点击左侧仪表盘的隧道管理——创建隧道,

  • 隧道名称:qwq32(可自定义命名,注意不要与已有的隧道名称重复)
  • 协议:选择 http
  • 本地地址:3000 (本地访问的地址)
  • 域名类型:选择随机域名
  • 地区:选择China Top

image-20250307152211623

隧道创建成功后,点击左侧的状态——在线隧道列表,查看所生成的公网访问地址,有两种访问方式,一种是http 和https:

image-20250307152247754

使用上面的任意一个公网地址,在手机或任意设备的浏览器进行登录访问,即可成功看到 Open WebUI 界面,这样一个公网地址且可以远程访问就创建好了,使用了cpolar的公网域名,无需自己购买云服务器,即可到随时在线访问Open WebUI来在网页中使用本地部署的qwq32b大模型了!

image-20250307152922595

小结

为了方便演示,我们在上边的操作过程中使用cpolar生成的HTTP公网地址隧道,其公网地址是随机生成的。这种随机地址的优势在于建立速度快,可以立即使用。然而,它的缺点是网址是随机生成,这个地址在24小时内会发生随机变化,更适合于临时使用。

如果有长期远程访问Open WebUI使用QWQ32B模型,或者异地访问与使用其他本地部署的服务的需求,但又不想每天重新配置公网地址,还想让公网地址好看又好记并体验更多功能与更快的带宽,那我推荐大家选择使用固定的二级子域名方式来为Open WebUI配置一个公网地址。

5. 配置固定公网地址

接下来演示如何为其配置固定的HTTP公网地址,该地址不会变化,方便分享给别人长期查看你部署的项目,而无需每天重复修改服务器地址。

配置固定http端口地址需要将cpolar升级到专业版套餐或以上。

登录cpolar官网,点击左侧的预留,选择保留二级子域名,设置一个二级子域名名称,点击保留:

image-20250307153118265

保留成功后复制保留成功的二级子域名的名称:myqwq,大家也可以设置自己喜欢的名称。

image-20250307153147428

返回Cpolar web UI管理界面,点击左侧仪表盘的隧道管理——隧道列表,找到所要配置的隧道:qwq32,点击右侧的编辑:

image-20250307153216940

修改隧道信息,将保留成功的二级子域名配置到隧道中

  • 域名类型:选择二级子域名
  • Sub Domain:填写保留成功的二级子域名:myqwq

点击更新(注意,点击一次更新即可,不需要重复提交)

image-20250307153316228

更新完成后,打开在线隧道列表,此时可以看到公网地址已经发生变化,地址名称也变成了固定的二级子域名名称的域名:

image-20250307153407718

最后,我们使用上边任意一个固定的公网地址访问,可以看到访问成功,这样一个固定且永久不变的公网地址就设置好了,可以随时随地在公网环境异地在线访问本地部署的Open WebUI来使用QWQ32B大模型了!

image-20250307153544415

总结

今天我们不仅成功地将Ollama与千问QWQ32B大模型安装到了本地Windows系统中,还利用Docker和Cpolar内网穿透技术实现了远程访问,配置了固定不变的二级子域名公网地址。老实说,这款大模型的表现真的超出了我的预期,尤其是在家用级硬件上的表现,简直就是为普通用户量身打造的神器!对于未来的发展,我充满了期待,谁不想拥有一个这么强大的私人AI助手呢?如果你也心动了,不妨动手试试吧!遇到问题别担心,欢迎随时留言交流,我们一起探索这个充满无限可能的世界。

<think>好的,我现在需要处理用户关于“QwQ-32B IT相关性不明”的查询。首先,用户的问题提到QwQ-32B,但不确定其具体含义,尤其是与IT的相关性。我的任务是通过网络搜索来弄清楚QwQ-32B可能指什么,解释它在IT领域中的相关性。 首先,我得明确QwQ-32B可能的含义。这个关键词看起来像是一个型号、项目代号、软件/硬件名称,或者是某个特定领域的术语。可能的情况包括:某个未公开的AI模型、硬件设备型号、内部项目代号,或者网络上的非正式术语。接下来需要分步骤进行搜索和分析。 第一步,我应该直接搜索“QwQ-32B”这个关键词,看看是否有明确的资料。根据之前的搜索结果,中文网络中没有直接相关的信息,这可能意味着它可能是一个较新的术语、内部项目,或者是非正式/社区创造的词汇。需要进一步分析可能的上下文。 接下来,考虑拆解关键词。QwQ可能是一个表情符号的变体,比如颜文字,常见于网络用语,表示卖萌或哭泣。而32B可能指代版本、规格(如32位处理器B版),或者与硬件型号相关。但在IT领域,这样的组合可能不太常见,需要更多的线索。 另一个可能性是,QwQ-32B是一个内部代号或特定社区的项目名称。例如,某些开源项目或研究机构会使用这样的代号。需要查看技术论坛、GitHub、论文库等地方是否有提及。 考虑到用户询问的是IT相关性,可能需要关注技术领域。例如,是否是机器学习模型(类似GPT-3、LLAMA的变体),或者是某种硬件规格。例如,32B可能指32亿参数,但通常模型会用B代表十亿(如LLaMA-7B),但32B也可能是32位总线或其他硬件参数。 由于直接搜索未果,需要从不同角度切入。比如搜索“QwQ 32B IT”的组合,或者寻找可能的拼写错误或相近术语。例如,QW-32B是否有相关信息?但根据之前的搜索,这似乎是一个无线模块,可能与用户的问题无关。 另外,考虑时间因素,如果QwQ-32B是最新发布的,可能信息还未广泛传播。需要检查近期的新闻、博客或技术发布记录。如果找不到,可能需要推测可能的领域,比如网络安全、数据存储、嵌入式系统等,但缺乏具体信息。 总结可能的解释:1)未公开/小众的IT项目;2)网络文化中的非技术术语;3)型号或代号,但信息不公开。因此,在回答中需要列出这些可能性,建议用户提供更多上下文或检查拼写。 接下来,按照用户的要求,生成结构化的回答,分方法或步骤,避免使用第一人称和步骤词汇,每个部分换行。然后添加相关问题部分,需基于原始问题和回答内容,至少三个相关问题。 需要确保回答符合格式要求:数学公式和代码的格式正确,引用分散在内容中,最后的相关问题标题正确,问题相关且基于内容。</think>根据网络搜索结果,"QwQ-32B"目前没有明确的公开技术资料或官方定义。通过多维度分析,可能涉及以下IT相关领域的解释方向: **硬件设备推测** 在工业设备命名体系中,"32B"可能表示32位总线架构或第32代B型版本。部分无线通信模块(如QW-32B无线串口模块)存在类似命名规则,但尚无证据表明与"QwQ"前缀直接关联。 **软件/算法关联** 32B可能指向32亿参数规模的AI模型,类似LLaMA-7B/13B的命名体系。开源社区存在用颜文字命名项目的案例(如UwU-Net图像处理模型),但未发现"QwQ-32B"的模型仓库或论文记录。 **网络协议延伸** 在加密协议领域,"Q"系列代号常与量子安全算法相关(如QKD协议),但标准文档中未见QwQ-32B的记载。32可能对应密钥长度或协议版本号。 ```python # 示例代码:网络术语自动检测 def detect_tech_term(term): patterns = { 'AI模型': r'\d+B$', '硬件型号': r'[A-Z]+\-\d+[A-Z]$', '协议标准': r'^[A-Z]{2,3}\d+' } for category, regex in patterns.items(): if re.match(regex, term): return category return '未识别类型' ``` **验证建议** 1. 检查术语拼写准确性,确认是否为QW-32B/Q32B等近似型号 2. 提供上下文环境线索(如出现领域、应用场景) 3. 查询专业设备型号数据库如GlobalSpec或IEEE标准文档库
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yawesh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值