阿里云发布的最新模型QwQ-32B,通过强化学习大幅度提升了模型推理能力。模型数学代码等核心指标(AIME 24/25、livecodebench)以及部分通用指标(IFEval、LiveBench等)达到DeepSeek-R1 满血版水平,各指标均显著超过同样基于 Qwen2.5-32B 的 DeepSeek-R1-Distill-Qwen-32B。
阿里云系统运维管理(OOS)的公共扩展功能为您提供了一键部署OpenWebUI+Ollama的便捷方案,让您轻松部署QwQ-32B模型到阿里云ECS。另外,您也可以连接阿里云百炼的QwQ-32B在线模型,本文也将提供详细的解决方案!
整个方案不需要任何的代码和命令执行,全部在控制台完成,所以新手朋友也不用担心哦,大胆地尝试起来吧!
部署OpenWebUI+Ollama
前提条件
-
ecs配置
-
如果您需要本地部署qwq-32b,建议ecs性能至少达到:CPU 16核以上,内存64GB+,硬盘30GB+,显卡24GB+显存;
-
如果您选择连接阿里云百炼qwq-32b在线模型,普通ECS即可;
-
您的ECS操作系统版本为以下之一:
-
Alibaba Cloud Linux (2.1903 LTS、3.2104 LTS)推荐
-
Ubuntu(20.04、22.04、24.04)
-
CentOS(7.7、7.8、7.9)
-
Debian(12.5、12.6)
-
OpenSUSE 15
-
Fedora(38、39、40)
-
Anolis OS(8.8、8.9)
-
AlmaLinux(9.3、9.4、9.5)
-
ECS实例必须处于运行中状态
-
ECS实例必须要有公网
-
安全组入方向必须开启3000端口
安装步骤
- 阿里云系统运维管理控制台[1]中找到OpenWebUI扩展 点击安装扩展程序。
- 请选择想要安装到的ECS实例,并点击创建。
- 等待执行几分钟,安装完成后。点击输出->扩展信息。您可以在配置输出里面找到已安装好的OpenWebUI的Url(格式为 http://{ECS的公网ip}:3000)。
-
点击url链接,根据提示创建账号并登录即可。
注意:
您需要确认安全组入方向3000端口已经开放,详情见附录1。
第一次登陆会比较慢,请在登陆后按照附录2说明,更改配置。下次登陆就会变快。
在Open WebUI部署QwQ-32B本地大模型
当您登陆进入管理界面,您可以直接在对话界面搜索,想要本地部署的模型。本文以部署QwQ-32B模型为例。点击从ollama官网[2]拉取,等待模型下载部署完成后,就可以直接使用啦!您可以在ollama官网查看可供下载的大模型。
下载完成后,您可以选择模型并开始对话。
更多信息可以参考OpenWebUI官方文档[3]。
在Open WebUI连接阿里云百炼在线模型
如果说您的ECS性能无法满足本地运行要求,您也可以配置连接阿里云百炼[4]的在线模型。百炼现在对于新用户还有最长达半年的免费额度,具体信息请参考新人免费额度_大模型服务平台百炼[5]。
点击进入管理员面板:
添加阿里云百炼的连接:
模型名称、URL(https://dashscope.aliyuncs.com/compatible-mode/v1)、API KEY等信息,都可以在阿里云百炼的控制台找到。
保存好后,回到对话页面,您就可以找到刚才配置的模型,并开始对话了。
原理解析
什么是OpenWebUI和Ollama
OpenWebUI 是一个开源的用户界面(UI)工具,通常用于与大型语言模型(LLM)进行交互。它提供了一个图形化的前端界面,使得用户可以更方便地与大模型进行对话、测试和调试。
OpenWebUI 支持多种后端模型,允许用户通过简单的配置文件或命令行参数来切换不同的模型。它通常用于研究、开发和演示场景,帮助开发者和研究人员更直观地了解模型的表现。
OpenWebUI 的主要功能特点:
-
支持多种语言模型(如 LLaMA、ChatGLM、Qwen 等)。
-
提供了友好的图形化界面,便于用户输入和查看输出。
-
可以自定义提示词(prompt),并支持多轮对话。
-
支持模型推理时的参数调整,如温度(temperature)、top-k、top-p 等。
Ollama 是一个专为大语言模型服务设计的开源工具,方便用户在本地快速部署大型模型。通过简单的安装过程,用户可以用一条命令即可启动和操作这些开源的大语言模型。它提供了一个易于使用的命令行界面和服务器,旨在简化构建大语言模型应用的流程。用户可以方便地下载、运行和管理各种开源的大模型。
上述安装过程中,扩展程序内的OpenWebUI已经完成了与Ollama的集成。借助OpenWebUI 提供的图形化用户界面,使得与 Ollama 交互变得更加直观和便捷。就像上面安装时,我们在UI界面搜索并点击下载QWQ-32b模型模型,背后其实就是执行了Ollama的命令,完成模型的下载和部署。这大大简化了操作流程,还提高了开发效率和灵活性。
安装脚本解析
您可以在公共扩展的详情页,找到完整的安装脚本:
主要是先完成了docker的安装,再拉取open-webui:ollama镜像,启动容器。这个镜像内已配置好open-webui和ollama的集成,维护在aliyun-computenest-opensource-registry这个公开仓库,您可随时拉取使用。
脚本里,docker命令创建了名为 ollama 和open-webui 的卷,用于持久化容器内的数据,并将主机的3000端口映射到容器的8080端口。您可以按需调整脚本,以适应个性化的安装需求。
之前是docker安装-----------
sudo systemctl start dockersudo systemctl enable docker
docker run -d -p 3000:8080 -v ollama:/root/.ollama -v open-webui:/app/backend/data --name open-webui --restart always aliyun-computenest-opensource-registry.cn-hangzhou.cr.aliyuncs.com/default/open-webui:ollama
sleep 5 # 等待容器初始化
docker ps -f name=openwebui
OpenWebUI高级玩法介绍
除了上面提到的基本的对话功能,openwebui还有很多有意思的功能,我们来看几个比较常用的功能。
模型对比输出
您可以添加多个模型,开启对话后,会以分栏的方式,同时展示不同模型的回答。您可以对比回答,挑选更符合要求的。
您还可以整合多个回答的问题:
自定义推理参数
您可以自定义模型的系统提示词、函数调用、温度k等配置,调出最适合自己的模型参数。
此外,OpenWebUI还有个性化知识库、AI对话游乐场等功能,您可以在官方文档[6]中继续探索!
附录
1. 开启安全组3000端口的方法(详细说明请看官方文档):
进入实例详情页,点击安全组选项,并点击安全组名称
点击快速添加,新增需要开放的端口。这里请开放3000端口。
- Open WebUI访问慢的问题
点击进入管理员面板,关闭OpenAI的连接(或者您可按需换成如阿里云百炼这种访问速度较快的外部API):
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓