今日分享丨按场景定制界面

遇到问题

我们在写文档或者代码时,会遇到需要书写重复或者类似内容的情况。快捷的做法是:先复制粘贴此相似内容,再修改差异。那么开发人员在设计界面的时候,也会遇到同类型的界面有重复的特性,比如报销类型的单据,都会有报销人员,所在部门,报销时间,报销说明等特性,我们是否也可以“复制粘贴”再去修改差异呢?

当我们“复制粘贴”并修改完差异后,发现有些重复内容需要修改,我们是否能只改一处,其它相似处就能全部自动修改呢?

如何解决问题

基于此问题,我们从设计界面的角度去思考。我们可以创建一个数据库表,存放这些共有的特性,又能保证此数据库表可以被复制,增加和修改字段。以此数据库表作为实体创建界面,界面也可以被复制,增加,修改字段,即在一个公用的模板基础上扩展出特有的界面。

      inBuilder考虑到这一情况,推出了按场景定制界面功能,把共用的特性创建在数据库表中,比如报销类单据,公有特性有:报销人员,人员所在单位,报销金额等,作为公有实体,以此实体创建公有界面;不同报销类型的单据,又存在差异,比如交通费报销单,会有交通工具,交通费用产生日等,通讯费会有报销月份,按场景对扩展出来的表单进行定制开发。

举例说明

以网上报销费用为例,大概的介绍一下我们的功能,提取报销类型单据的共有部分,设计其报销费用的数据库表,即为实体,部分实体数据如图1,以此实体创建一个基础公有界面。

开启界面和实体的允许扩展按钮后,在业务配置中心按照报销类型进行定制化配置,如图2,按报销类型不同,生成两个扩展模板。

之后打开不同报销类型的扩展表单分别进行配置,配置界面如图3,可以在此界面进行布局修改,是否显示公有表单原有的字段,增加修改字段等操作,按场景定制界面。

总结

按场景定制界面这一功能的推出,能够为用户提供便捷,高效的设计体验。这个功能的加入,不仅能降低用户处理冗余工作,又能帮助用户系统结构化应对复杂业务挑战。

写在最后,欢迎大家下载我们的inBuidler低代码平台开源社区版,可免费下载使用,加入我们,开启开发之旅!

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值