1.1 统计学习的对象:统计学习的对象是数据(data)。它从数据出发,提取数据的特征,抽象出数据的模型,发现数据中的知识,又回到对数据的分析与预测中去。
1.2 统计学习的目的:统计学习用于对数据进行预测和分析,特别是对未知新数据进行预测与分析。
1.3 统计学习的方法:统计学习由监督学习(supervised learning)、非监督学习(unsupervised learning)、半监督学习(semi-supervisedlearning)和强化学习(renforcement learning)等组成。
1.4 监督学习:从给定的、有限的、用于学习的训练的数据(training data)集合出发,假设数据是独立同分布产生的;并且假设要学习的模型属于某个函数的集合,称为假设空间(hypothesis space);应用某个评价准则(evaluation criterion),从假设空间中选取一个最优的模型,使它对已知训练数据及未知测试数据(test data)在给定的评价准则下有最优的预测;最优模型的选取由算法实现。
1.5 统计学习方法的三要素:模型的假设空间(模型model)、模型选择的准则(策略strategy)、模型学习的算法(算法algorthm)。
1.6 统计学习方法的步骤:
(1)得到一个有限的训练数据集合;
(2)确定包含所有可能的模型的假设空间,即学习模型的集合
(3)确定模型选择的准则,即学习策略;
(4)实现求解最优化模型的算法,即学习的算法;
(5)通过学习方法选择最优化模型;
(6)利用学习的最优化对新数据进行预测或分析;
1.7 输入空间与输出空间:将输入与输出所有可能取值的集合分别称为输入空间(input space)与输出空间(outputspace)。特征空间:每个具体的输入是一个实例(isntance),通常由特征向量(featurevector)表示。这时,所有特征向量存在的空间称为特征空间(feature space)。
1.8 假设空间(hypothesis space):模型属于由输入空间到输出空间的映射的集合,这个集合就是假设空间(hypothesis space)。
1.9 损失函数:0-1损失函数,平方损失函数,绝对损失函数,对数损失函数。
1.10 风险函数(risk function)又称期望损失函数(expectedloss)。
1.11 平均损失和经验风险(empirical risk)或经验损失(empirical loss)。
1.12 期望风险与经验风险或经验损失之间的关系。
1.13 经验风险最小化(empirical risk minimization,ERM)
1.14 结构风险最小化(structural risk minimaization)
1.15 训练误差与测试误差
1.16 正则化:正则化是结构风险最小化策略的实现,是在经验风险上加一个正则化项(regularizer)或罚项(penaltyterm)。正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化值就越大。
1.17 交叉验证:(1)简单交叉验证:首先随机地将已给的数据分为两部分,一部分作为训练集,另一部分作为测试集,然后用训练集在各种条件下训练模型,从而得到不同模型,在测试集上评价各个模型的测试误差,选出测试误差最小的模型。(2)S折交叉验证(S-fold cross validation),方法如下:首先随机地将已给数据切分为S个互不相交的大小相同的子集;然后利用s-1个子集的数据训练模型,利用余下的自己测试模型;将这一过程对可能的S种选择重复进行;最后选出S次评测中平均测试误差最小的模型。(3)留一交叉验证:S折交叉验证的特殊情形是S=N,称为留一交叉验证(leave-one-out cross validation),往往在数据缺乏的情形下使用。这里,N是给定数据集的容量。
1.18 泛化误差(generalization ability):是指由该方法学习得到的模型对未知数据的预测能力。