《深度学习PyTorch版》:第六章 卷积神经网络摘录

本文是关于深度学习中卷积神经网络的笔记,探讨了卷积神经网络如何利用空间结构信息,包括其优点如高效采样和计算,以及从全连接层到卷积的转变,涉及不变性、卷积概念、多层感知机的限制,以及图像卷积的实际应用,如互相关运算的解释和代码实现。
摘要由CSDN通过智能技术生成

这一系列,是作者阅读李沐、阿斯顿编写的《深度学习PyTorch版》所作的笔记,作者目前关于深度学习所作的思考和实现的能力都较浅,阅者见谅。

为有效利用每张图像的空间结构信息,而不是简单的将图像数据展成一维向量,卷积神经网络出现了。卷积神经网络的优点:①高校采样获得精确的模型  ②高效的计算

6.1 从全连接层到卷积

多层感知机很适合处理表格数据,行对应样本,列对应特征。当不能预先假设任何与特征交互相关的先验结构时,多层感知机可能是最好的选择。然而对于高维数据,缺少结构的网络会变得不实用。

6.1.1不变性

平移不变性:不管检测哪个位置,神经网络前面几层应该对相同的图像区域具有相似的反应。

局部性:神经网络前面几层应该只探索输入图像的局部区域,不过度在意图像中相隔较远的区域。最终聚合局部特征进行预测。

6.1.2多层感知机的限制

卷积神经网络:包含卷积层的一类特殊的神经网络。

V卷积核/滤波器:可简单的解释为该卷积层的权重,通常该权重是可学习的参数。

6.1.3卷积

卷积是当把一个函数“翻转”并移位给x时,测量f与g之间的重叠。当为离散对象时,积分就变成了求和。

6.1.4“沃尔多在哪里”回顾

通道:图像一般包含3个通道//3种原色。图像不是二维张量,而是由高度、宽度、颜色组成的三维张量。

隐藏表示:可想象为一系列具有二维张量的通道,这些通道有时也称为特征映射,因为每个通道都向后续层提供了一组空间化的学习特征。

一组隐藏表示:一些相互堆叠的二维网格。

6.2图像卷积

卷积神经网络的图像实际应用

6.2.1互相关运算

卷积层(一个错误的运算):它想表达的是互相关运算而不是卷积运算。在卷积层中,输入张量核张量通过互相关运算生成输出张量,如下图1所示

图1 卷积层互相关运算图

卷积窗口从输入张量的左上角开始,从左到右,从上到下滑动。当滑动到一个新位置时,包含在该窗口的部分张量与卷积核张量进行按元素相乘,得到的张量再求和得到单一的一个标量值。(输出大小小于输入大小,为保证输出大小不变,须在图像边缘填充0保证有足够空间移动卷积核)

代码实现:
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值