多学科优化
马小_乐
这个作者很懒,什么都没留下…
展开
-
关于Kriging代理模型的理解(转)
1.回归问题如果有多个自变量和一个因变量和代表它们关系的训练样本,目的就是求这个因变量关于这多个自变量的函数。二. 最小二乘法 (转) 我们以最简单的一元线性模型来解释最小二乘法。什么是一元线性模型呢? 监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量转载 2017-05-10 21:51:53 · 39938 阅读 · 3 评论 -
物理规划
物理规划是针对多目标优化问题,获得parato非劣解的一种方法; 核心思想是建立一条曲线,怎样的值,对应怎样的曲线即可。 具体建立步骤: 可参考北理工邢超《基于物理规划的弹道多目标优化设计》 或者《物理规划方法及其在飞机方案设计中的应用》(d解有错,-变+号),其余全部照抄,真的是够了。原创 2017-09-09 18:21:39 · 508 阅读 · 0 评论 -
关于应用Isight做代理模型及EI采点+优化
1.代理模型应用MATLAB的DACE工具箱制作制作流程代码如下:load('shuju1.txt');X(:,1)=shuju1(:,1);X(:,2)=shuju1(:,2);YY(:,1)=shuju1(:,3);theta=[10 10];lob=[1e-1 1e-1];upb=[20 20];[dmodel,perf]=dacefit(X,YY,@re原创 2017-06-05 16:07:34 · 5591 阅读 · 9 评论 -
关于多学科框架搭建
1.兰文博 : 系统级变量与目标函数,学科级变量与目标函数与约束。 解释:道理我都懂,大系统是否需要加上代理模型从上图可以看出,大系统也加响应面模型。上述为学科框架。(过载传递是不太懂的)原创 2017-06-06 11:22:43 · 390 阅读 · 0 评论 -
MATLAB中自带遗传算法函数GA的用法
ga用遗传算法寻找函数的最优解语法规则x = ga(fitnessfcn,nvars)x = ga(fitnessfcn,nvars,A,b)x = ga(fitnessfcn,nvars,A,b,Aeq,beq)x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB)%其中fitnessfc为函数的句柄或者为匿名函数转载 2017-06-05 10:47:26 · 84465 阅读 · 2 评论 -
关于Isght画相关图的使用说明
1.左边参数不要点在MATLAB上,要点在parameters上,然后才有DOE画图选项。原创 2017-05-24 11:30:23 · 838 阅读 · 0 评论 -
Kriging中一些技巧
1.reshape函数B=reshape(A,m,n)矩阵重新构造成m*n的矩阵,元素由A列获得。A=[1 4 7 102 5 8 113 6 9 12]B=reshape(A,2,6)B=[1 3 5 7 9 112 4 6 8 10 12]2.mesh(A,B,C)A,B分别为矩阵,则生成原创 2017-05-11 19:58:58 · 1485 阅读 · 1 评论 -
克里金模型
1.模型建立[dmodel,perf]=dacefit(S,Y,regr,corr,theta0)[dmodel,perf]=dacefit(S,Y,regr,corr,theta0,lob,upb)输入参数:S:设计点,一个m*n的矩阵。 Y:一个S的响应值矩阵 m*qregr:回归模型(0阶多项式,1阶,二阶) co翻译 2017-05-11 11:29:51 · 10118 阅读 · 3 评论 -
关于由Isight转化为Matlab中的几个关键点
1.优化算法 ga工具箱: 语法规则 :可 [x,fval]=ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options) 输出:x为优化的设计量,fval为目标函数。 输入:fit,nvars必有,其余若无且在中间,则[]代替。 fitnessfcn适应度函数,nvars变量(X)数量。不等式约束:A,b为AX<=b(A,b为矩阵,eg,原创 2018-01-02 11:39:41 · 2163 阅读 · 0 评论