数论基础

本文介绍了数论中的基本概念,包括互质、欧拉函数和模运算中的阶与原根。欧拉函数φ(n)表示小于或等于n且与n互质的正整数个数,而原根则是满足特定条件的模运算元素。欧拉定理阐述了互质元素的幂次与欧拉函数的关系。这些概念在数论和加密算法中扮演着重要角色。
摘要由CSDN通过智能技术生成

概念

互质

定义:设整数 a a a b b b,若 a a a b b b公因数只有 1 1 1,则称 a a a b b b 互质。

欧拉函数

定义:设正整数 n n n,欧拉函数是小于或等于 n n n正整数中与 n n n 互质的数的数目,记为 φ ( n ) φ(n) φ(n)(其中 φ ( 1 ) = 1 φ(1)=1 φ(1)=1)。

定义:设 m > 1 m>1 m>1,且 g c d ( a , m ) = 1 gcd(a,m)=1 gcd(a,m)=1(即 a a a m m m 互质),那么使得 a r ≡ 1 ( m o d m ) a^r≡1(modm) ar1(modm) 成立的最小的正整数 r r r 称为 a a a 对模 m m m 的阶,记为 δ m ( a ) δ_m(a) δm(a)

原根

定义:设正整数 m m m,整数 a a a,若 δ m ( a ) = φ ( m ) δ_m(a)=φ(m) δm(a)=φ(m),则称 a a a 为模 m m m 的一个原根。(其中 φ ( m ) φ(m) φ(m) 表示 m m m 的欧拉函数)

定理

欧拉定理(Euler’s theorem)

       若正整数 a 和整数 m 互质,则 a φ ( m ) ≡ 1 ( m o d m ) a^{φ(m)}≡1(modm) aφ(m)1(modm)



参考链接:
https://www.cnblogs.com/cytus/p/9296661.html

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值