数学期望、方差、标准差

1、数学期望(先判断是否存在——绝对收敛)

离散型随机变量:分布律(随机变量的取值——对应的概率)

连续型随机变量:先离散化后取极限,利用微积分办法推导

随机变量函数

2、性质

3、方差——衡量随机变量的取值与其均值之间的偏离程度

对方差开平方——标准差

方差 = 均方值 - 均值的平方

在实际的例子中,如果均值相等,则需要对比方差,方差越小越好。

注意:上面基本性质的证明都是从基本定义出发,慢慢展开计算。

 

 

——学习自中国大学生慕课MOOC《概率论与数理统计》- 北京交通大学理学院

 

 

 

 

在Python中,如果你使用的是`scipy.stats`库中的`descriptive_stats()`函数,可以轻松地计算一组样本数据的描述性统计量,包括均值(mean)、方差(variance)、标准差(standard_deviation)和数学期望(如果已知数据范围的话)。这里是一个简单的例子: ```python from scipy import stats def calculate_descriptive_stats(data): # 确保数据是一个列表或其他可迭代的对象 if not isinstance(data, (list, tuple)): raise ValueError("Input should be a list or tuple") # 使用descriptive_statistics函数获取统计信息 descriptive_stats_result = stats.describe(data) # 提取所需的具体值 mean = descriptive_stats_result.mean variance = descriptive_stats_result.variance standard_deviation = math.sqrt(descriptive_stats_result.variance) # 注意这里需要导入math模块来使用sqrt函数 # 如果你想计算数学期望(假设数据是连续的概率分布),并且数据有明确的范围,可以用range除以长度得到期望值,但这超出了原始函数的功能 # expected_value = (data.max() - data.min()) / len(data) return mean, variance, standard_deviation # 示例数据 sample_data = [1, 2, 3, 4, 5] mean, variance, std_dev = calculate_descriptive_stats(sample_data) print(f"Mean: {mean}, Variance: {variance}, Standard Deviation: {std_dev}") ``` 注意,在上述代码中,对于数学期望的计算,常规的做法是假设数据服从某种概率分布,如正态分布,而直接通过数据范围估算期望值并不总是准确的。如果需要精确的数学期望,通常会依赖于更复杂的数据模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值