OpenCV:入门(三)

图像平滑技术详解:均值、方框、高斯、中值与双边滤波

图像平滑处理

在尽量保留图像原有信息的情况下,过滤掉图像内部的噪声,这一过程称为对图像的平滑 处理,所得的图像称为平滑图像。

一,均值滤波

均值滤波是指用当前像素点周围 N·N 个像素值的均值来代替当前像素值。使用该方法遍 历处理图像内的每一个像素点,即可完成整幅图像的均值滤波。

(1)基本原理

在进行均值滤波时,首先要考虑需要对周围多少个像素点取平均值。通常情况下,我们会 以当前像素点为中心,对行数和列数相等的一块区域内的所有像素点的像素值求平均。得到的平均值作为该点的值。卷积核的大小可以为3x3,5x5等奇数的正方形。

如果要处理的点不满足卷积核的大小该怎么办呢?比如要处理的点位于左上角,如下图:

遇到这种情况,我们只需要扩充一下外边界,扩充到卷积核可以使用的大小:

我们可以在新添的行列中加入值,这样就可以继续卷积操作了。

上面我们多次提及卷积核的概念,那么卷积核是什么呢?

回顾均值滤波的操作,我们不难发现这个过程本质上就是将原图像的矩阵与一个充满1/n元素的nxn(n一般为奇数)矩阵点乘的结果:

 化简得到:

图中右侧就称为卷积核,卷积核也不一定就全是一样的值,后面我们将提及不同的卷积核(方框滤波,高斯滤波等),你可以认为卷积核内的大小意味着权重大小,均值滤波显然是等权重的。 

一般形式为:

,M 和 N 分别对应高度和宽度。一般情况下,M 和 N 是相等的,例如比较常用的 3×3、5×5、 7×7 等。如果 M 和 N 的值越大,参与运算的像素点数量就越多,图像失真越严重。 

(2)函数语法

dst = cv2.blur( src, ksize, anchor, borderType )

  • dst 是返回值,表示进行均值滤波后得到的处理结果。
  • src 是需要处理的图像,即原始图像。它可以有任意数量的通道,并能对各个通道独立 处理。图像深度应该是 CV_8U、CV_16U、CV_16S、CV_32F 或者 CV_64F 中的一种。
  • ksize 是滤波核的大小。 anchor 是锚点,其默认值是(-1, -1),表示当前计算均值的点位于核的中心点位置。该 值使用默认值即可,在特殊情况下可以指定不同的点作为锚点。
  • borderType 是边界样式,该值决定了以何种方式处理边界,其值如表 7-1 所示。一般情 况下不需要考虑该值的取值,直接采用默认值即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值