壹、题目描述 ¶
贰、题解 ¶
本来有一种十分完美的生成函数解法。
我们不难发现,最后的多项式实际上就是:
∏
i
=
1
n
1
−
x
i
1
−
x
\prod_{i=1}^n{1-x^i\over 1-x}
i=1∏n1−x1−xi
我们可以将分子全部拿出来看看:
∏
i
=
1
n
(
1
−
x
i
)
\prod_{i=1}^n(1-x^i)
i=1∏n(1−xi)
这不禁让人想起了付公主的背包,使用类似的方法进行化简:
(
∗
)
=
exp
(
∑
i
=
1
n
ln
(
1
−
x
i
)
)
=
exp
(
∑
i
=
1
n
∫
−
i
x
i
−
1
1
−
x
i
d
x
)
=
exp
(
∑
i
=
1
n
∫
∑
j
=
0
∞
−
i
x
i
−
1
×
x
i
j
d
x
)
=
exp
(
∑
i
=
1
n
∑
j
=
0
∞
−
i
x
i
(
j
+
1
)
i
(
j
+
1
)
)
=
exp
(
∑
i
=
1
n
∑
j
=
1
∞
−
x
i
j
j
)
\begin{aligned} (*)&=\exp\left(\sum_{i=1}^n\ln(1-x^i)\right) \\ &=\exp\left(\sum_{i=1}^n\int{-ix^{i-1}\over 1-x^i}dx\right) \\ &=\exp\left(\sum_{i=1}^n\int\sum_{j=0}^\infty-ix^{i-1}\times x^{ij}dx\right) \\ &=\exp\left(\sum_{i=1}^n\sum_{j=0}^\infty {-ix^{i(j+1)}\over i(j+1)}\right) \\ &=\exp\left(\sum_{i=1}^n\sum_{j=1}^\infty{-x^{ij}\over j}\right) \end{aligned}
(∗)=exp(i=1∑nln(1−xi))=exp(i=1∑n∫1−xi−ixi−1dx)=exp(i=1∑n∫j=0∑∞−ixi−1×xijdx)=exp(i=1∑nj=0∑∞i(j+1)−ixi(j+1))=exp(i=1∑nj=1∑∞j−xij)
求
exp
\exp
exp 里面的东西是
O
(
k
ln
k
)
\mathcal O(k\ln k)
O(klnk) 的,做
exp
\exp
exp 是
O
(
k
log
k
)
\mathcal O(k\log k)
O(klogk) 的,最后的复杂度就是
O
(
k
log
k
+
k
ln
k
)
\mathcal O(k\log k+k\ln k)
O(klogk+klnk).
注意别忘记了还有一个 1 ( 1 − x ) n 1\over (1-x)^n (1−x)n1.
但是由于 m o d = 1 0 9 + 7 \bmod=10^9+7 mod=109+7,除非你打三模 N T T \rm NTT NTT 或者 F F T \rm FFT FFT 或者 M T T \rm MTT MTT.
还有另一种做法,对最本质的问题使用容斥 —— 钦定一些 i i i 使得 D ( x ) ≥ x D(x)\ge x D(x)≥x. 假定他们的和为 s s s,通过隔板法,不难发现分配剩下的数的方案数就是 ( k − s + n − 1 n − 1 ) {k-s+n-1\choose n-1} (n−1k−s+n−1).
那么,现在问题是,如何从 1 , 2 , 3 , ⋯ n 1,2,3,\cdots n 1,2,3,⋯n 中选择 i i i 个数使得他们的和刚好为 s s s ?这里有一个很妙的 D P \rm DP DP:
设 f ( i , j ) f(i,j) f(i,j) 表示当前有 i i i 个数,和为 j j j.
考虑转移:
- 若 j ≥ i j\ge i j≥i,那么我们可以考虑:
- 将当前所有数都加上 1 1 1,方案数加上 f ( i , j − i ) f(i,j-i) f(i,j−i);
- 第 i i i 个数是刚刚插入的,将前 i − 1 i-1 i−1 个数加 1 1 1 之后在末尾放上一个 1 1 1,方案数加上 f ( i − 1 , j − i ) f(i-1,j-i) f(i−1,j−i);
- 若 j > n j>n j>n,那么可能出现最大的数变成 n + 1 n+1 n+1 的情况,所以考虑将这种情况减掉,减去 f ( i − 1 , j − n − 1 ) f(i-1,j-n-1) f(i−1,j−n−1);
该转移妙在,我们维护的是一个动态的过程,可以在序列中加数,但是在加数之前,要先将前面的所有数平移一位,以保证所有的数互不相同。
其实也可以从差分数组角度理解吧?
以上 D P \rm DP DP 是 O ( k k ) \mathcal O(k\sqrt k) O(kk) 的,总复杂度就是这个咯。
艹,傻 [哔] 出题人,不给 N T T \rm NTT NTT 模数,出题人我 [哔] 你 [哔] 。
另,计算答案时不要忘记系数。
叁、参考代码 ¶
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<vector>
using namespace std;
// #define NDEBUG
#include<cassert>
namespace Elaina{
#define rep(i, l, r) for(int i=(l), i##_end_=(r); i<=i##_end_; ++i)
#define drep(i, l, r) for(int i=(l), i##_end_=(r); i>=i##_end_; --i)
#define fi first
#define se second
#define mp(a, b) make_pair(a, b)
#define Endl putchar('\n')
#define mmset(a, b) memset(a, b, sizeof a)
// #define int long long
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
template<class T>inline T fab(T x){ return x<0? -x: x; }
template<class T>inline void getmin(T& x, const T rhs){ x=min(x, rhs); }
template<class T>inline void getmax(T& x, const T rhs){ x=max(x, rhs); }
template<class T>inline T readin(T x){
x=0; int f=0; char c;
while((c=getchar())<'0' || '9'<c) if(c=='-') f=1;
for(x=(c^48); '0'<=(c=getchar()) && c<='9'; x=(x<<1)+(x<<3)+(c^48));
return f? -x: x;
}
template<class T>inline void writc(T x, char s='\n'){
static int fwri_sta[1005], fwri_ed=0;
if(x<0) putchar('-'), x=-x;
do fwri_sta[++fwri_ed]=x%10, x/=10; while(x);
while(putchar(fwri_sta[fwri_ed--]^48), fwri_ed);
putchar(s);
}
}
using namespace Elaina;
const int mod=1e9+7;
const int maxk=2e5;
const int sqrtk=450;
inline int qkpow(int a, int n){
int ret=1;
for(; n>0; n>>=1, a=1ll*a*a%mod)
if(n&1) ret=1ll*ret*a%mod;
return ret;
}
int fac[maxk+5], finv[maxk+5];
inline void prelude(){
fac[0]=finv[0]=1;
for(int i=1; i<=maxk; ++i)
fac[i]=1ll*fac[i-1]*i%mod;
finv[maxk]=qkpow(fac[maxk], mod-2);
for(int i=maxk-1; i>=1; --i)
finv[i]=1ll*finv[i+1]*(i+1)%mod;
}
inline int C(int n, int m){
if(n<m) return 0;
return 1ll*fac[n]*finv[m]%mod*finv[n-m]%mod;
}
int n, k, m=450;
int f[sqrtk+5][maxk+5];
inline void getf(){
f[0][0]=1;
for(int i=1; i<=m; ++i){
for(int j=i; j<=k; ++j){
if(j>=i) f[i][j]=(0ll+f[i][j-i]+f[i-1][j-i])%mod;
if(j>n) f[i][j]=(0ll+f[i][j]+mod-f[i-1][j-n-1])%mod;
}
}
}
#define sign(i) (((i)&1)? -1: 1)
inline void getans(){
int ans=0;
for(int s=0; s<=k; ++s){
int cnt=0;
for(int j=0; j<=m; ++j)
cnt=(0ll+cnt+mod+sign(j)*f[j][s])%mod;
ans=(0ll+ans+mod+1ll*C(k-s+n-1, n-1)*cnt%mod)%mod;
}
writc(ans);
}
signed main(){
prelude();
n=readin(1), k=readin(1);
getf();
getans();
return 0;
}
肆、关键之处 ¶
不得不说,这种转移真的很巧妙,转移一个 “动态” 的数组,操作有二:
- 将数组中每个元素加一;
- 将数组中每个元素加一之后,在末尾放入一个 1 1 1;
第一个操作是为了处理数中间有“断层”的情况,第二个操作是为了加入元素,并且保证元素两两不同。