原题传送门:Giga Tower
一、题意概述
【大意】一些线段把矩形分成了多个小多边形,随后给了一个圆,判断其与哪些块有交集(请注意:不一定相交),并求出这些块的面积。
【样例分析】
其中标阴影部分的就是与圆有交集的块。
二、分析
显然,本题中点的坐标、以及圆和多边形相交问题,都可以采用解析几何来解决。为此,我们建立一个直角坐标系并计算各图形的方程。
唯一需要注意的便是最后判断相交的部分。由于是面与凸多边形相交,因此不能单单判断线段与圆的交点,有以下两种特例:
- 内含(无交点)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4DqE9Xrb-1627218457281)(https://cdn.luogu.com.cn/upload/image_hosting/yh9d4f1g.png)]
此时只需判断圆心是否在多边形内。
- 端点相交
此时只需判断线段中点是否在多边形内。
接下来是具体的实现部分:
三、代码
1.点和向量
const double eps = 1e-8;
double dcmp(double x) {
if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1;
}
struct Point
{
double x, y;
Point(double x = 0, double y = 0) :x(x), y(y) { }
};
Vector operator + (Vector A, Vector B) {
return Vector(A.x + B.x, A.y + B.y);
}
Vector operator - (Point A, Point B) {
return Vector(A.x - B.x, A.y - B.y);
}
Vector operator * (Vector A, double p) {
return Vector(A.x * p, A.y * p);
}
double Dot(Vector A, Vector B) { return A.x * B.x + A.y * B.y; }
double Cross(Vector A, Vector B) { return A.x * B.y - A.y * B.x; }
double Length2(Vector A) { return Dot(A, A); }
2.线段与多边形
typedef Point Vector;
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
Vector u = P - Q;
double t = Cross(w, u) / Cross(v, w);
return P + v * t;
}
bool OnSegment(Point p, Point a1, Point a2) {
return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
}
double PolygonArea(Polygon poly) {
double area = 0;
int n = poly.size();
for (int i = 1; i < n - 1; i++)
area += Cross(poly[i] - poly[0], poly[(i + 1) % n] - poly[0]);
return area / 2;
}
Polygon CutPolygon(Polygon poly, Point A, Point B) {
Polygon newpoly;
int n = poly.size();
for (int i = 0; i < n; i++) {
Point C = poly[i];
Point D = poly[(i + 1) % n];
if (dcmp(Cross(B - A, C - A)) >= 0) newpoly.push_back(C);
if (dcmp(Cross(B - A, C - D)) != 0) {
Point ip = GetLineIntersection(A, B - A, C, D - C);
if (OnSegment(ip, C, D)) newpoly.push_back(ip);
}
}
return newpoly;
}
int isPointInPolygon(Point p, Polygon v) {
int wn = 0;
int n = v.size();
for (int i = 0; i < n; i++) {
if (OnSegment(p, v[i], v[(i + 1) % n])) return -1;
int k = dcmp(Cross(v[(i + 1) % n] - v[i], p - v[i]));
int d1 = dcmp(v[i].y - p.y);
int d2 = dcmp(v[(i + 1) % n].y - p.y);
if (k > 0 && d1 <= 0 && d2 > 0) wn++;
if (k < 0 && d2 <= 0 && d1 > 0) wn--;
}
if (wn != 0) return 1;
return 0;
}
vector<Polygon> pieces, new_pieces;
void cut(int x1, int y1, int x2, int y2) {
new_pieces.clear();
for (int i = 0; i < pieces.size(); i++) {
Polygon left = CutPolygon(pieces[i], Point(x1, y1), Point(x2, y2));
Polygon right = CutPolygon(pieces[i], Point(x2, y2), Point(x1, y1));
if (left.size() >= 3) new_pieces.push_back(left);
if (right.size() >= 3) new_pieces.push_back(right);
}
pieces = new_pieces;
}
bool DiscIntersectPolygon(Polygon poly, Point p, double R) {
if (isPointInPolygon(p, poly) != 0) return true;
if (isInCircle(poly[0], p, R)) return true;
int n = poly.size();
for (int i = 0; i < n; i++) {
if (CircleIntersectSegment(poly[i], poly[(i + 1) % n], p, R)) {
return true;
}
if (isInCircle((poly[i] + poly[(i + 1) % n]) * 0.5, p, R)) {
return true;
}
}
return false;
}
3.圆
bool isInCircle(Point p, Point center, double R) {
return dcmp(Length2(p - center) - R * R) < 0;
}
int getLineCircleIntersection(Point A, Point B, Point C, double r, double& t1, double& t2)
{
double a = B.x - A.x;
double b = A.x - C.x;
double c = B.y - A.y;
double d = A.y - C.y;
double e = a * a + c * c;
double f = 2 * (a * b + c * d);
double g = b * b + d * d - r * r;
double delta = f * f - 4 * e * g;
if (dcmp(delta) < 0) return 0;
if (dcmp(delta) == 0) {
t1 = t2 = -f / (2 * e);
return 1;
}
t1 = (-f - sqrt(delta)) / (2 * e);
t2 = (-f + sqrt(delta)) / (2 * e);
return 2;
}
bool CircleIntersectSegment(Point A, Point B, Point p, double R)
{
double t1, t2;
int c = getLineCircleIntersection(A, B, p, R, t1, t2);
if (c <= 1) return false;
if (dcmp(t1) > 0 && dcmp(t1 - 1) < 0) return true;
if (dcmp(t2) > 0 && dcmp(t2 - 1) < 0) return true;
return false;
}
4.完整代码
#include<cstdio>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;
const double eps = 1e-8;
double dcmp(double x) {
if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1;
}
struct Point
{
double x, y;
Point(double x = 0, double y = 0) :x(x), y(y) { }
};
typedef Point Vector;
typedef vector<Point> Polygon;
Vector operator + (Vector A, Vector B) {
return Vector(A.x + B.x, A.y + B.y);
}
Vector operator - (Point A, Point B) {
return Vector(A.x - B.x, A.y - B.y);
}
Vector operator * (Vector A, double p) {
return Vector(A.x * p, A.y * p);
}
double Dot(Vector A, Vector B) { return A.x * B.x + A.y * B.y; }
double Cross(Vector A, Vector B) { return A.x * B.y - A.y * B.x; }
double Length2(Vector A) { return Dot(A, A); }
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
Vector u = P - Q;
double t = Cross(w, u) / Cross(v, w);
return P + v * t;
}
bool OnSegment(Point p, Point a1, Point a2) {
return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
}
double PolygonArea(Polygon poly) {
double area = 0;
int n = poly.size();
for (int i = 1; i < n - 1; i++)
area += Cross(poly[i] - poly[0], poly[(i + 1) % n] - poly[0]);
return area / 2;
}
Polygon CutPolygon(Polygon poly, Point A, Point B) {
Polygon newpoly;
int n = poly.size();
for (int i = 0; i < n; i++) {
Point C = poly[i];
Point D = poly[(i + 1) % n];
if (dcmp(Cross(B - A, C - A)) >= 0) newpoly.push_back(C);
if (dcmp(Cross(B - A, C - D)) != 0) {
Point ip = GetLineIntersection(A, B - A, C, D - C);
if (OnSegment(ip, C, D)) newpoly.push_back(ip);
}
}
return newpoly;
}
int isPointInPolygon(Point p, Polygon v) {
int wn = 0;
int n = v.size();
for (int i = 0; i < n; i++) {
if (OnSegment(p, v[i], v[(i + 1) % n])) return -1;
int k = dcmp(Cross(v[(i + 1) % n] - v[i], p - v[i]));
int d1 = dcmp(v[i].y - p.y);
int d2 = dcmp(v[(i + 1) % n].y - p.y);
if (k > 0 && d1 <= 0 && d2 > 0) wn++;
if (k < 0 && d2 <= 0 && d1 > 0) wn--;
}
if (wn != 0) return 1;
return 0;
}
bool isInCircle(Point p, Point center, double R) {
return dcmp(Length2(p - center) - R * R) < 0;
}
int getLineCircleIntersection(Point A, Point B, Point C, double r, double& t1, double& t2)
{
double a = B.x - A.x;
double b = A.x - C.x;
double c = B.y - A.y;
double d = A.y - C.y;
double e = a * a + c * c;
double f = 2 * (a * b + c * d);
double g = b * b + d * d - r * r;
double delta = f * f - 4 * e * g;
if (dcmp(delta) < 0) return 0;
if (dcmp(delta) == 0) {
t1 = t2 = -f / (2 * e);
return 1;
}
t1 = (-f - sqrt(delta)) / (2 * e);
t2 = (-f + sqrt(delta)) / (2 * e);
return 2;
}
bool CircleIntersectSegment(Point A, Point B, Point p, double R)
{
double t1, t2;
int c = getLineCircleIntersection(A, B, p, R, t1, t2);
if (c <= 1) return false;
if (dcmp(t1) > 0 && dcmp(t1 - 1) < 0) return true;
if (dcmp(t2) > 0 && dcmp(t2 - 1) < 0) return true;
return false;
}
vector<Polygon> pieces, new_pieces;
void cut(int x1, int y1, int x2, int y2) {
new_pieces.clear();
for (int i = 0; i < pieces.size(); i++) {
Polygon left = CutPolygon(pieces[i], Point(x1, y1), Point(x2, y2));
Polygon right = CutPolygon(pieces[i], Point(x2, y2), Point(x1, y1));
if (left.size() >= 3) new_pieces.push_back(left);
if (right.size() >= 3) new_pieces.push_back(right);
}
pieces = new_pieces;
}
bool DiscIntersectPolygon(Polygon poly, Point p, double R) {
if (isPointInPolygon(p, poly) != 0) return true;
if (isInCircle(poly[0], p, R)) return true;
int n = poly.size();
for (int i = 0; i < n; i++) {
if (CircleIntersectSegment(poly[i], poly[(i + 1) % n], p, R)) {
return true;
}
if (isInCircle((poly[i] + poly[(i + 1) % n]) * 0.5, p, R)) {
return true;
}
}
return false;
}
void query(Point p, int R) {
vector<double> ans;
for (int i = 0; i < pieces.size(); i++) {
if (DiscIntersectPolygon(pieces[i], p, R)) {
ans.push_back(fabs(PolygonArea(pieces[i])));
}
}
printf("%d", ans.size());
sort(ans.begin(), ans.end());
for (int i = 0; i < ans.size(); i++)
printf(" %.2lf", ans[i]);
printf("\n");
}
int main() {
int n, m, L, W;
while (scanf("%d%d%d%d", &n, &m, &L, &W) == 4 && n) {
pieces.clear();
Polygon bbox;
bbox.push_back(Point(0, 0));
bbox.push_back(Point(L, 0));
bbox.push_back(Point(L, W));
bbox.push_back(Point(0, W));
pieces.push_back(bbox);
for (int i = 0; i < n; i++) {
int x1, y1, x2, y2;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
cut(x1, y1, x2, y2);
}
for (int i = 0; i < m; i++) {
int x, y, R;
scanf("%d%d%d", &x, &y, &R);
query(Point(x, y), R);
}
printf("\n");
}
return 0;
}