数学方法006 | 换元法解决不等式(下)——第三种换元:根据题目条件换元
在许多不等式中,题目都会有明显的换元提示(如xyz=1,xyz=x+y+z,xy+yz+zx=1xyz=1,xyz=x+y+z,xy+yz+zx=1xyz=1,xyz=x+y+z,xy+yz+zx=1),这时候就务必要灵敏地察觉这一条件并根据常见的套路换元。总结下来,可以利用的恒等式有:
(左边是恒等式,右边是可以联想到的条件)
1.xy⋅yz⋅zx=1=xz⋅yx⋅zy (abc=1)2.x=a+b,y=b+c,z=c+a (x,y,z是三角形三边)(以下假设A,B,C是三角形的三个内角)3.tan
原创
2021-01-25 19:37:24 ·
1384 阅读 ·
0 评论