Unet图像分割

本文深入介绍了语义分割任务及其在图像处理中的应用,重点解析了Unet模型的三大组成部分:主干特征提取、特征增强与融合、以及像素级分类预测。文章使用VGG16作为主干网络,并详细阐述了如何通过上采样和特征融合实现高精度的分割。此外,还提供了动手实践指导,涉及三分类问题。
摘要由CSDN通过智能技术生成

UNet

详细博客指路:https://blog.csdn.net/weixin_44791964/article/details/108866828

一.语义分割

目的及作用:将原图的每一个像素点进行类别划分。
例:
在这里插入图片描述
语义分割原理:通过卷积神经网络提取足够的特征后再通过反卷积进行分割
在这里插入图片描述

二.Unet模型

Unet可以分为三个部分,如下图所示:

第一部分是主干特征提取部分,我们可以利用主干部分获得一个又一个的特征层,Unet的主干特征提取部分与VGG相似,为卷积和最大池化的堆叠。利用主干特征提取部分我们可以获得五个初步有效特征层,在第二步中,我们会利用这五个有效特征层可以进行特征融合。

第二部分是加强特征提取部分,我们可以利用主干部分获取到的五个初步有效特征层进行上采样,并且进行特征融合,获得一个最终的,融合了所有特征的有效特征层。

第三部分是预测部分,我们会利用最终获得的最后一个有效特征层对每一个特征点进行分类,相当于对每一个像素点进行分类。

详细博文指路:
https://www.cnblogs.com/PythonLearner/p/14041874.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值