自适应学习平台的关键技术与典型案例
[点我下载论文]
1. 概述
该篇文章对国外火热的自适应学习平台Knewton进行了分析。从基础架构、数据模型和核心技术三个方面对Knewton平台进行了介绍。Knewton平台提供了适应的持续性,可以对学生的学习表现和活动完成质量给予及时反馈, 以在正确的时间基于正确的内容提供合适的学习指导,来最大化学生获得学习内容的可能性; 同时基于给定活动的完成情况, 自适应学习系统应能持续性地逐步引导学生进入下一个活动。
2. Knewton平台
2.1 基础架构
Knewton平台基础架构包含三个部分:数据收集与处理组件、推理与评估组件和个性化服务组件。
2.1.1 数据收集与处理组件
该组件负责数据的收集、归并和处理。
2.1.2 推理与评估组件
该组件又分为心理测验引擎、学习策略引擎和反馈引擎。
- 心理测验引擎负责评估学生的概念掌握程度、内容参数、学习效率等,并通过推理的方式来扩充学生的数据集(包括挖掘学习偏好、认知风格、知识结构、能力水平、学习进度等),最终形成能综合表征学习者学习状态的信息档案面板。
- 学习策略引擎主要用于评估学生对教学、测验、进度安排等方面变化的敏感程度,识别学生在学习过程中对学习资源、学习环境等改变做出的反应,并据此为学生选择合适的学习策略,如提供符合学习者认知风格的学习资源和学习路径、提供符合学习者学习水平的测评方案等;
- 反馈引擎负责对数据和反馈结果进行归一化处理,并将它们返回到自适应本体库中, 以丰富自适应本体的元数据信息, 使知识概念与学生的学习过程信息之间建立更符合实际且可用的关联, 进而提高推理和分析的精准性。

本文介绍了自适应学习平台Knewton的关键技术与应用案例。Knewton平台通过数据收集与处理、推理评估及个性化服务三大组件,实现学生学习路径的智能优化。平台采用知识图谱、学生事件等数据模型,结合项目反应理论,为学生提供定制化学习体验。
最低0.47元/天 解锁文章

35

被折叠的 条评论
为什么被折叠?



