系列文章目录
文章目录
一、实验目的
(1)掌握集成学习的基本思想;
(2)掌握 boosting 和 bagging 策略;
(3)了解基于 Adaboost 及 bagging 集成器实现多分类任务。
二、实验原理
1.集成学习
集成学习(Ensemble learning)通过构建并结合多个学习器来完成学习任
务,也被称为多分类器系统或基于委员会的学习系统等。
集成学习的一般结构是先构建一组“个体学习器”,随后再利用某种策略将
这些“个体学习器”结合起来得到集成学习的结果。其中的个体学习器一般使用
决策树等较通用的现成算法,使用训练数据集训练得到。
根据个体生成器的生成方式,集成学习方法可以分为两大类。分别为个体学
习器之间存在强依赖关系、必须串行生成的序列化方法,例如 Boosting;以及
个体学习器之间不存在强依赖关系、可以同时生成的并行化方法,例如 Bagging
和随机森林。
由于集成学习是通过将多个学习器进行结合,故常常可以获得比单独某个学
习器更显著和优越的效果。
2.Boosting
Boosting 是一类可以将弱学习器提升为强学习器的算法。
Boosting 的工作机制基本相同:首先从初始训练集中训练出一个基学习器,
随后根据基学习器的性能表现对训练样本的分布进行一定的调整,增强对错误样
本的关注度;随后基于调整后的样本分布来训练下一个基学习器;持续迭代当前
过程,直至基学习器数目达到预先设定的值;最终将全部基学习器进行加权集合,
训练完成。
Boosting 算法中具代表性的算法为 Adaboost 算法。Adaboost 算法可以通过
使得基学习器线性组合后最小化指数损失函数来推导得到。
但标准的 Adaboost 算法只能实现二分类任务,或者说,利用标准 Adaboost
算法直接进行多分类任务很难取得较好的结果。因此要想实现多分类,可以采用
改进的 SAMME 或 SAMME.R 算法1。
SAMME 与标准 Adaboost 非常相似,只是增加了 log(K−1)这一项。因此,当
类别数 K=2 时,SAMME 等同于 Adaboost。
与 SAMME 算法不同,SAMME.R 算法采用加权概率估计(weighted probability
estimates)的方法更新加法模型。相比来说,SAMME.R 算法使用了比 SAMME 算
法更多的信息,也可以获得更高的准确率和鲁棒性。
3.Bagging
在基学习器相互独立的情况下,集成学习器的误差随着学习器数量的增多呈
指数级的下降。但是,使用相同类型的基学习器处理相同的问题,几乎不可能做
到相互独立。因此可以在数据上进行处理,即对相同训练样本进行采样,产生出
若干个不同的子集,再使用每个子集分别训练基学习器。当采样方法恰当时,由
于训练数据不同,获得的基学习器会有比较大的差异,同时可以取得较好的结果。
Bagging 算法基于自助采样法,也可以理解为有放回重新采样法,即给定一
个包含 m 个样本点的数据集,每次取出样本放入采样集中,再把样本放回原始数
据集,使得下次采样时仍然可以选中这个样本。重复上述过程,可以采样出 T
个含 m 个训练样本的采样集,随后对每个采样集训练出一个基学习器,再将基学
习器进行结合。Bagging 中对于分类任务采用简单投票法(少数服从多数),对
于回归任务采用简单平均法(几何平均)。分类任务中出现同票情况时,采用随
机选择或者进一步考察分类器投票置信度来决定。
Bagging 的算法描述如下图所示:
三、实验内容
使用 Python 编写 Adaboost 和 Bagging 算法框架,并利用 sklearn 提供的基
学习器构建 Adaboost 和 Bagging 算法模型,读取 Iris 数据集信息并进行多分类
预测,调整超参数优化模型,并根据精确率、召回率和 F1 值度量模型性能。
四、实验步骤
1. Adaboost-SAMME 算法
SAMME 算法首先初始化权重。随后进行 M 次迭代,每次迭代需要训练基分类
并进行预测,根据预测结果计算错误率,并根据错误率调整样本分布情况,最后
根据处理分类器权重并归一,完成本次迭代。
具体代码实现及注释如下:
def boost_SAMME(self, X, y, sample_weight): # SAMME
estimator = deepcopy(self.base_estimator_)
if self.random_state_:
estimator.set_params(random_state=1)
# (a)训练基分类器,计算结果
estimator.fit(X, y, sample_weight=sample_weight)
y_pred = estimator.predict(X)
incorrect = y_pred != y
# (b)计算错误率
estimator_error = np.dot(incorrect, sample_weight) / np.sum(sample_weight, axis=0)
# 分类效果比随机数还差,抛弃这种情况
if estimator_error >= 1 - 1 / self.n_classes_:
return None, None, None
# (c)(1)计算当前分类器权重
estimator_weight

本文介绍了机器学习实验系列中的集成学习,包括Boosting(如Adaboost-SAMME和SAMME.R)和Bagging方法,通过Python实现并应用到Iris数据集,探讨了Adaboost的多分类策略和Bagging的随机森林构建过程。
最低0.47元/天 解锁文章
36

被折叠的 条评论
为什么被折叠?



