CATO原理中的数学与魔术(二)——数学模型

早点关注我,精彩不错过!

在上一篇文章中,我们介绍了CATO原理的历史和基本内容,并提到了其与当下数学和魔术发展水平不匹配的判断,相关详情请戳:

CATO原理中的数学与魔术(一)——经典回顾

本篇我尝试围绕原始CATO原理的基本内容,对整个原理基于数学模型作出完整的现代视角的表述。

下面是用公理化方法下的CATO原理的数学结构和数学模型的全部内容。

1. 公理化数学结构

1.1. 公理化前提

集合论公理等

1.2. 公理化描述

1.2.1. 符号定义

1.2.1.1. 牌叠元组描述

DTS = {DT in DS ^ + | DT.S is Perm(len2(DT))}

DS = C ^ *

C = N ^ 3 * B

DT.S = Concat({DT[i].S | i in 0:(len(DT) - 1)})

for D in DS, D.S = {(i, D[i].v) | i in 0:(len(D) - 1)}

for DT in DTS, D in DT.1, D.i = DT[] ^ - 1

for c in D.1, c.v = c[0], c.i = c[1] = DT[][j] ^ - 1, c.j = c[2] = DT[i][] ^ - 1, c.o = c[3]

A.i = {x[i] | {x_n} in A}

len2(DT) = sum({len(D) | D in DT})

DT.I = {i in N | len(DT[i]) > 0}

FST = (Q, Sig, Tal, Dir), Dir is Q * Sig -> Q * Tal

FST = DTFST

Q = DTS

Sig = OP

OP is DTS -> DTS

Tal = DT.k.1

DT.k is DTS -> K

Dir(DT, op) = (op(DT), op(DT).k), for DT in DTS, op in OP

bop2op = {(bop, pt, idt_0, idt_1, op) in BOP * bop.pt.1 * N ^ 2 * OP | pt in bop.pt, idt_1 cross (DT_0.I - idt_0) = phi, op = (DT_0, DT_1), any DT_0[idt_0] != phi, 

DT_1 = bop(DT_0.DT[idt_0], pt), DT_1[i]=phi,i in len(DT_1), except:

DT_1[idt_1] = DT, 

DT_1[DT_0.I - idt_0] = DT_0[IDT_1.I - idt_0]}

BOP = power(DT * PT -> DT)

bop.ptis BOP -> PT

PT = P ^ *

1.2.1.2. CATO原理用到的定义

CATOQ(D, i) = D[i].o xor i % 2, i in 0:len(len(D))

CATOQER(D) = {(c_1, c_2) in C ^ 2 | i, j in 0:(len(D) - 1), c_1 = D[i], c_2 = D[j], CATOQ(D, i) = CATOQ(D, j)}

CATOQERQ(D) = D / CATOQER(D)为等价关系CATOQER的商集[6]

ERQV(CATOQ) = CATOQERQV(D) = 

{VS included in N | exist CS in CATOERQ(D), VS = {v in N | exist c in CS, v = c.v}}

ERQV = {(Q_1, Q_2) in (DS * N -> X_1) *  (DS -> X_2) | Q_1.1 in 0:(len(D) - 1), any Q_1 in (D * N -> X_1), Q_2 = ERQV(Q_1) = {(D, x_2) in DS * X_2 | any D in DS

, ER(D, Q_1) = {(c_1, c_2) in C ^ 2 | i, j in 0:(len(D) - 1), c_1 = D[i], c_2 = D[j], Q_1(D, i) = Q_1(D, j)}

, ERQ(D, Q_1) = D / ER(D, Q_1)

, x_2 = {VS included in N | exist CS in ERQ(D, Q_1), VS = {v in N | exist c in CS, v = c.v}}

}}

CATOQD(A) = {D in DS | CATOERQV(D) = A}

EvenCATOQD(A) = {D in DS | CATOERQV(D) = A, len(D) % 2 = 0}

OddCATOQD(A) = {D in DS | CATOERQV(D) = A, len(D) % 2 = 1}

1.2.2. 公理化性质

牌张不变性(守恒)

for any i in N, j in 0:(len2(DT_0) - 1),exist unique k1 in 0:(len(DT_i) - 1), k2 in len(DT_i[k1]),DT_i[k1][k2].v = j,即for any i in N,exist {(k1, k2) | k1 in 0:(len(DT_i) - 1), k2 in len(DT_i[k1])} -> 0:(len2(DT_0) - 1) as bijection

推论0:for any i in N, len2(DT_0) = len2(DT_i),DT_0.S.2 = DT_i.S.2

推论1:for any i_1, i_2 in N,exist {(k1, k2) | k1 in 0:(len(DT_i_1) - 1), k2 in len(DT_i_1[k1])} -> {(k1, k2) | k1 in 0:(len(DT_i_2) - 1), k2 in len(DT_i_2[k1])} as bijection

推论2:if exist i,len(DT_i) = 1,then DT_i[0] is permutation

2. 数学问题和逻辑推理

2.1. 牌叠性质定理

附加条件:无

数学结论:for DT in DTS, DT[i].S is Perm(0:(len2(DT) - 1), len(D)).

逻辑推理:根据DTS和DT.S的定义,性质显然成立。

2.2. EvenCATOQD切牌不变定理

附加条件:len(DT_0) = 1, exist k in N+, len(DT_0[0]) = 2k, op_0 = bop2op(CCCut, (n, ), (0, ), (1, )), any n in 1:(len(DT_0[0]) - 1).

数学结论:设D = DT_0[0],D_2 = DT_1[0],for any i, j in 0:(len(D) - 1),CATOQ(D, i) = CATOQ(D, j) <=> CATOQ(D_2, D_2.S ^ - 1(D[i].v)) = CATOQ(D_2, D_2.S ^ - 1(D[j].v)),即D_2满足CATOQERQV(D) = CATOQERQV(D_2),D_2 in CATOQD(CATOERQV(D)).

推论:以上操作在任意DT_0上的DT_0[i],i in 0:(len(DT_0) - 1)上进行,结论仍然成立。

逻辑推理:

证明:

设m = len(D),则D.S = 0:(m - 1)(符号定义)

D_2.S = CCCut(D.S, n)(条件)

 = D.S[n: ] + D.S[: n](切牌和完成切牌定理)

 = n:(m - 1) + 0:(n - 1)

即,D_2.S[i] = (i + n) % m,D_2.S ^ - 1[i] = (i - n) % m(等价变形)=>(结论1);

所以,D_2.S ^ - 1[D[i].v)] = D_2.S ^ - 1[i](符号定义)

 = (i - n) % m;(结论1)=>(结论2)

因为m = 2k(条件),所以(i - n) % m % 2 = (i - n) % 2(同余定义)=>(结论3);

对n的奇偶性进行分类讨论:

1. 当n为偶数,(i - n) % m % 2 = (i - n) % 2 = i % 2(结论3,分类讨论条件)=>(结论3.1);

所以,CATOQ(D_2, D_2.S ^ - 1(D[i].v)) = D_2[D_2.S ^ - 1(D[i].v)].o xor (i - n) % m % 2(符号定义,结论2)

 = D[i].o xor i % 2(切牌和完成切牌是洗牌不该变o性质,结论3.1)

 = CATOQ(D, i)(符号定义)

故此时原命题成立(=的等价关系的传递性)

2. 当n为奇数,(i - n) % m % 2 = (i - n) % 2 = (i + 1) % 2(同余定义,分类讨论条件(3.2);

所以,

CATOQ(D2, D2.S ^ - 1(D[i].v)) = D2.[D2.S ^ - 1(D[i].v)].o xor (i - n) % m % 2(符号定义,结论2)

 = D.c_i.o xor (i + 1) % 2(切牌和完成切牌是洗牌不该变o性质,结论3.1)

 = not CATOQ(D, i)(符号定义,xor的not交换律)

故此时原命题成立(not逻辑是二元一一映射)

3. 数学建模

3.1. 符号说明from符号定义

DTS(deck tuple set):若干牌叠组成的牌叠元组的全体

DT(deck tuple):DTS中的代表元素

DS(deck set):牌叠序列全体

C(card set):牌张全体

DT.S(deck tuple's sequence):DT中所有D的D.S的拼接

D(deck):DS中的代表元素

D.S(deck tuple's sequence):牌叠序列上牌张的值索引序列

D.i(deck's index):D在DT中的元组索引

c(card):C中的代表元素

c.v(card's value index):c的牌值索引

c.i(card's deck tuple index):c在所在D在DT中的元组索引

c.j(card's position index in deck):c在所在D中的位置索引

c.o(card's orientation):c的空间朝向,0背面朝上,1正面朝上

A.i(A's i set):A维关系的第i维元素的全集

len(D):D的牌张数

len(DT):DT的牌叠数

len2(DT):DT中所有D的牌张总数

DT.I(deck tuple not empty index set):DT中牌张数不为0的有效牌叠所在元组中元素索引的集合

FST(finite state transducer) = DTFST(S)(deck tuple finite state transducer):牌叠元组有限状态转移机(全体)

Q(S)(state):状态全体(全体)

Sig(S) = OP(operation):操作全体(全体)

Tal(S) :输出全体(全体)

IDT.k(indexed deck tuple's key quality):IDT的核心性质

CATOQ(CATO quality):CATO牌张性质函数,参数为牌叠D和牌张位置的索引;

CATOQER(CATO quaility equivalent relationship):CATO性质上的等价关系

CATOQERQ(CATO quaility equivalent relationship quotient set):CATO性质上的等价关系的商集

CATOQERQV(CATOQ equivalent relationship quotient set‘s value set)):CATOQERQ对应的牌值生成集

ERQV(equivalent relationship quotient set‘s value set):某性质上等价关系商集对应的牌值生成集

CATOQD(CATO quality of deck):CATOQERQV等于特定集合时的性质对应的牌叠集合;

Even/OddCATOQD(CATO quality of even/odd deck):CATOQD性质加上牌叠张数为偶数/奇数的要求;

3.2. 定律from公理化性质

3.2.1. 牌张不变性:无论经过怎样的操作,得到的牌叠元组状态下,牌张不会消失也不会增加,每张牌上的图案值也不会改变;即存在一个初始牌叠每张牌到任意操作后每张牌的双射。

推论0:任何操作后牌叠元组的牌叠总张数不变,值集合也不变;

推论1:操作中的任意两个中间状态,也存在每张牌之间的双射;

推论2:如果某次操作的牌叠元组只有1个元素,那么其唯一元素的牌叠值序列是排列;

3.3. 实际问题和论证说明from数学问题和逻辑推理

3.3.1.牌叠性质定理

实际问题条件:任意牌叠元组

实际问题结论:其中任意牌叠都是长度为自身的牌叠元组所有牌值元素集合下的子排列

论证说明:因为各牌叠排列的拼接为整个牌叠元组全排列,结论显然。

3.3.2. EvenCATOQD切牌不变定理

实际问题条件:牌叠张数为偶数

实际问题结论:切牌前后所有牌的CATOQ值相等的牌仍然相等,反之亦然。

论证说明:整个过程朝向不变,如果切牌张数为奇数,则所有牌的位置奇偶性变化,相等性不变,CATOQ不变,偶数则位置奇偶性不变,CATOQ不变。

以上就是要讲清楚CATO原理所构建的牌叠元组,状态机过程描述和等价类性质的全部数学结构和模型。这套大厦我还在不断完善中,而CATO应该是使用它的一个典范,接下来所有的内容都会依照此介绍下去。下一篇,我们将聊到,所谓CATO牌叠性质的不变性,对应的所有操作有哪些,该如何建立通用的描述模型。

精彩抢先看!

视频1 翻煎饼找4Ace

视频2 3517A

视频3 42的宇宙答案

视频4 My Predictable Parity

视频5 终极油和水

57df56c60eaf5d30b7bdab0ce66fca20.gif

我们是谁:

MatheMagician,中文“数学魔术师”,原指用数学设计魔术的魔术师和数学家。既取其用数学来变魔术的本义,也取像魔术一样玩数学的意思。文章内容涵盖互联网,计算机,统计,算法,NLP等前沿的数学及应用领域;也包括魔术思想,流程鉴赏等魔术内容;以及结合二者的数学魔术分享,还有一些思辨性的谈天说地的随笔。希望你能和我一起,既能感性思考又保持理性思维,享受人生乐趣。欢迎扫码关注和在文末或公众号留言与我交流!

14bb213171685444d0b1174648d8a771.gif

041ce6acb45f3711e054b0355ec5a3fd.png

96a47f6aeaf7b030b95d2f1b31949899.jpeg

扫描二维码

关注更多精彩

CATO原理中的数学与魔术(一)——经典回顾

魔术里的交代与暗交代(三)——暗交代是怎么做的?

牛顿运动定律的谜团(四)——牛顿定律的数学模型

魔术《4 Kings 折纸》的三重境界(四)——魔术效果的突破

视错觉与魔术(二)——橡皮筋的奇迹

da19f9aa881e7f349daee8cb6d8dba9e.gif

点击阅读原文,往期精彩不错过!

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值