Mem0 的 CRUD 到底是如何实现的?我们来看下源码。
使用
先来看下,如何使用 Mem0
import os
os.environ["OPENAI_API_KEY"] = "sk-xxx"
from mem0 import Memory
m = Memory()
# 1. Add: Store a memory from any unstructured text
result = m.add("I am working on improving my tennis skills. Suggest some online courses.", user_id="alice", metadata={"category": "hobbies"})
# Created memory --> 'Improving her tennis skills.' and 'Looking for online suggestions.'
# 2. Update: update the memory
result = m.update(memory_id=<memory_id_1>, data="Likes to play tennis on weekends")
# Updated memory --> 'Likes to play tennis on weekends.' and 'Looking for online suggestions.'
# 3. Search: search related memories
related_memories = m.search(query="What are Alice's hobbies?", user_id="alice")
# Retrieved memory --> 'Likes to play tennis on weekends'
# 4. Get all memories
all_memories = m.get_all()
memory_id = all_memories[0]["id"] # get a memory_id
# All memory items --> 'Likes to play tennis on weekends.' and 'Looking for online suggestions.'
# 5. Get memory history for a particular memory_id
history = m.history(memory_id=<memory_id_1>)
# Logs corresponding to memory_id_1 --> {'prev_value': 'Working on improving tennis skills and interested in online courses for tennis.', 'new_value': 'Likes to play tennis on weekends' }
MemoryBase
MemoryBase 是一个抽象类,定义了一些接口方法
- get
- get_all
- update
- delete
- history
class MemoryBase(ABC):
@abstractmethod
def get(self, memory_id):
"""
Retrieve a memory by ID.
Args:
memory_id (str): ID of the memory to retrieve.
Returns:
dict: Retrieved memory.
"""
pass
@abstractmethod
def get_all(self):
"""
List all memories.
Returns:
list: List of all memories.
"""
pass
@abstractmethod
def update(self, memory_id, data):
"""
Update a memory by ID.
Args:
memory_id (str): ID of the memory to update.
data (dict): Data to update the memory with.
Returns:
dict: Updated memory.
"""
pass
@abstractmethod
def delete(self, memory_id):
"""
Delete a memory by ID.
Args:
memory_id (str): ID of the memory to delete.
"""
pass
@abstractmethod
def history(self, memory_id):
"""
Get the history of changes for a memory by ID.
Args:
memory_id (str): ID of the memory to get history for.
Returns:
list: List of changes for the memory.
"""
pass
Memory
Memory 实现 MemoryBase 接口
class Memory(MemoryBase):
init
def __init__(self, config: MemoryConfig = MemoryConfig()):
self.config = config
self.embedding_model = EmbedderFactory.create(self.config.embedder.provider)
# Initialize the appropriate vector store based on the configuration
vector_store_config = self.config.vector_store.config
if self.config.vector_store.provider == "qdrant":
self.vector_store = Qdrant(
host=vector_store_config.host,
port=vector_store_config.port,
path=vector_store_config.path,
url=vector_store_config.url,
api_key=vector_store_config.api_key,
)
else:
raise ValueError(
f"Unsupported vector store type: {self.config.vector_store_type}"
)
self.llm = LlmFactory.create(self.config.llm.provider, self.config.llm.config)
self.db = SQLiteManager(self.config.history_db_path)
self.collection_name = self.config.collection_name
self.vector_store.create_col(
name=self.collection_name, vector_size=self.embedding_model.dims
)
self.vector_store.create_col(
name=self.collection_name, vector_size=self.embedding_model.dims
)
capture_event("mem0.init", self)
初始化 embedding_model, vector_store(这里只能是 Qdrant), llm, db, collection_name
add
def add(
self,
data,
user_id=None,
agent_id=None,
run_id=None,
metadata=None,
filters=None,
prompt=None,
):
"""
Create a new memory.
Args:
data (str): Data to store in the memory.
user_id (str, optional): ID of the user creating the memory. Defaults to None.
agent_id (str, optional): ID of the agent creating the memory. Defaults to None.
run_id (str, optional): ID of the run creating the memory. Defaults to None.
metadata (dict, optional): Metadata to store with the memory. Defaults to None.
filters (dict, optional): Filters to apply to the search. Defaults to None.
Returns:
str: ID of the created memory.
"""
- 将用户 data 发给 llm ,得到 extracted_memories
- 将用户 data 转成 embeddings
- vector_store 根据 embeddings search 得到 existing_memories
- 将新,老 memory 发给 llm 来 merge
- 调用函数 _create_memory_tool 进行实际操作
- vector_store insert
- db add_history
get
def get(self, memory_id):
"""
Retrieve a memory by ID.
Args:
memory_id (str): ID of the memory to retrieve.
Returns:
dict: Retrieved memory.
"""
- vector_store 根据 memory_id 去 get
get_all
def get_all(self, user_id=None, agent_id=None, run_id=None, limit=100):
"""
List all memories.
Returns:
list: List of all memories.
"""
- vector_store 根据 collection_name, filters, limit 调用 list 接口
search
def search(
self, query, user_id=None, agent_id=None, run_id=None, limit=100, filters=None
):
"""
Search for memories.
Args:
query (str): Query to search for.
user_id (str, optional): ID of the user to search for. Defaults to None.
agent_id (str, optional): ID of the agent to search for. Defaults to None.
run_id (str, optional): ID of the run to search for. Defaults to None.
limit (int, optional): Limit the number of results. Defaults to 100.
filters (dict, optional): Filters to apply to the search. Defaults to None.
Returns:
list: List of search results.
"""
- embedding_model 将 query 转 embeddings
- vector_store 根据 embeddings search
update
def update(self, memory_id, data):
"""
Update a memory by ID.
Args:
memory_id (str): ID of the memory to update.
data (dict): Data to update the memory with.
Returns:
dict: Updated memory.
"""
- 调用 _update_memory_tool
- existing_memory = self.vector_store.get
- embeddings = self.embedding_model.embed(data)
- self.vector_store.update
- self.db.add_history
delete
def delete(self, memory_id):
"""
Delete a memory by ID.
Args:
memory_id (str): ID of the memory to delete.
"""
- 调用 _delete_memory_tool
- existing_memory = self.vector_store.get
- self.vector_store.delete
- self.db.add_history
delete_all
def delete_all(self, user_id=None, agent_id=None, run_id=None):
"""
Delete all memories.
Args:
user_id (str, optional): ID of the user to delete memories for. Defaults to None.
agent_id (str, optional): ID of the agent to delete memories for. Defaults to None.
run_id (str, optional): ID of the run to delete memories for. Defaults to None.
"""
- memories = self.vector_store.list
- foreach memories
- _delete_memory_tool
history
def history(self, memory_id):
"""
Get the history of changes for a memory by ID.
Args:
memory_id (str): ID of the memory to get history for.
Returns:
list: List of changes for the memory.
"""
- self.db.get_history
reset
def reset(self):
"""
Reset the memory store.
"""
- self.vector_store.delete_col
- self.db.reset()
AnonymousTelemetry
- capture_event 收集信息
- telemetry 用的是 Posthog(https://us.i.posthog.com)
SQLiteManager
- db 用的是 sqlite3
- 一个记录历史的表
CREATE TABLE IF NOT EXISTS history (
id TEXT PRIMARY KEY,
memory_id TEXT,
prev_value TEXT,
new_value TEXT,
event TEXT,
timestamp DATETIME,
is_deleted INTEGER
)
MemoryClient
class MemoryClient:
"""Client for interacting with the Mem0 API.
This class provides methods to create, retrieve, search, and delete memories
using the Mem0 API.
Attributes:
api_key (str): The API key for authenticating with the Mem0 API.
host (str): The base URL for the Mem0 API.
client (httpx.Client): The HTTP client used for making API requests.
"""
- 主要用于跟平台(https://api.mem0.ai/v1)交互
- 接口
- add
- get
- get_all
- search
- delete
- delete_all
- history
- reset
Embedding
class EmbeddingBase(ABC):
@abstractmethod
def embed(self, text):
"""
Get the embedding for the given text.
Args:
text (str): The text to embed.
Returns:
list: The embedding vector.
"""
pass
- HuggingFaceEmbedding(model_name=“multi-qa-MiniLM-L6-cos-v1”)
- Ollama(model=“nomic-embed-text”)
- OpenAI(model=“text-embedding-3-small”)
LLM
class LLMBase(ABC):
def __init__(self, config: Optional[BaseLlmConfig] = None):
"""Initialize a base LLM class
:param config: LLM configuration option class, defaults to None
:type config: Optional[BaseLlmConfig], optional
"""
if config is None:
self.config = BaseLlmConfig()
else:
self.config = config
@abstractmethod
def generate_response(self, messages):
"""
Generate a response based on the given messages.
Args:
messages (list): List of message dicts containing 'role' and 'content'.
Returns:
str: The generated response.
"""
pass
- AWSBedrockLLM(anthropic.claude-3-5-sonnet-20240620-v1:0)
- GroqLLM(llama3-70b-8192)
- LiteLLM(gpt-4o)
- OllamaLLM(llama3)
- OpenAILLM(gpt-4o)
- TogetherLLM(mistralai/Mixtral-8x7B-Instruct-v0.1)
VectorStore
class VectorStoreBase(ABC):
@abstractmethod
def create_col(self, name, vector_size, distance):
"""Create a new collection."""
pass
@abstractmethod
def insert(self, name, vectors, payloads=None, ids=None):
"""Insert vectors into a collection."""
pass
@abstractmethod
def search(self, name, query, limit=5, filters=None):
"""Search for similar vectors."""
pass
@abstractmethod
def delete(self, name, vector_id):
"""Delete a vector by ID."""
pass
@abstractmethod
def update(self, name, vector_id, vector=None, payload=None):
"""Update a vector and its payload."""
pass
@abstractmethod
def get(self, name, vector_id):
"""Retrieve a vector by ID."""
pass
@abstractmethod
def list_cols(self):
"""List all collections."""
pass
@abstractmethod
def delete_col(self, name):
"""Delete a collection."""
pass
@abstractmethod
def col_info(self, name):
"""Get information about a collection."""
pass
- 只有 Qdrant 一个实现
总结
- 核心就是 Memory 类,实现了 MemoryBase 接口
- 通过 embedding_model 来处理文本
- 通过 vector_store 存储 embedding
- 通过 llm 处理数据
- 通过 db 记录 Memory 的历史