简支梁的模态分析(附命令流)
设截面尺寸 $ b \times h =0.2 m \times 0.3m$,跨度
L
=
20
m
L=20m
L=20m,质量密度
ρ
=
8000
k
g
/
m
3
\rho=8000 kg/m^3
ρ=8000kg/m3,弹性模量
E
=
210
G
p
a
E=210Gpa
E=210Gpa,则其第
i
i
i阶自振频率为:
f
i
=
π
i
2
2
L
2
E
I
m
=
i
2
π
h
4
L
2
E
3
ρ
(
i
=
1
,
2
,
3
,
…
)
(1)
f_i=\frac{\pi i^2}{2L^2}\sqrt{\frac{EI}{m}}=i^2 \frac{\pi h}{4L^2}\sqrt{\frac{E}{3 \rho}}\ \ \ \ (i=1,2,3,\dots) \tag1
fi=2L2πi2mEI=i24L2πh3ρE (i=1,2,3,…)(1)
当采用最大元素归一法时,各阶振型(不考虑轴向振型)为:
y
i
(
x
)
=
sin
(
i
π
x
L
)
(
i
=
1
,
2
,
3
,
…
)
(2)
y_i(x)=\sin(\frac{i\pi x}{L})\ \ \ \ (i=1,2,3,\dots) \tag{2}
yi(x)=sin(Liπx) (i=1,2,3,…)(2)
本例是一个平面结构,用 BEAM3 单元进行模拟比较简单。也可采用 BEAM89 单元模拟,**但是为与式(1)的理论振型完全一致,需要添加一些约束,例如绕梁自身轴的转动、面外位移和转动、纵向位移自由度等,否则会出现其他形式的整形。**若采用 BEAM189 单元就需要定义梁截面,**在模态拓展时需要计算单元的计算结果,否则带单元形状绘制振型图时会出现异样的结果。**归一化选择振型最大元素法,可以看到大多如图所示的最大平动位移均为 1.0,但也有最大转动位移(ROTZ)为 1.0 振型,如第 8 阶振型。
命令流:
!=====================================
! 简支梁模态分析
FINISH$/CLEAR$/PREP7$B=0.2$H=0.3$L=20 !定义参数
ET,1,BEAM189$MP,EX,1,2.1E11$MP,PRXY,1,0.3$MP,DENS,1,8000 !定义单元和材料性质
SECTYPE,1,BEAM,RECT$SECDATA,B,H !定义梁截面:宽B高H的矩形梁单元
$K,1,0,0$K,2,L,0
K,3,L/2,L !定向关键点
L,1,2
LATT,1,,1,,,3,1 !LATT, MAT, REAL, TYPE, --, KB, KE, SECNUM
LESIZE,ALL,,,50
LMESH,ALL !创建几何和有限元模型
D,1,UX,,,,,UY
D,2,UY
D,ALL,UZ,,,,,ROTX,ROTY,UX !增加的约束 !施加约束
/SOLU
ANTYPE,2 !模态分析
MODOPT,LANB,20,,,,ON !模态提取方法,提取的模态数,
MXPAND,20,,,YES
SOLVE !模态分解
/POST1
SET,LIST
SET,1,1
PLDISP,1
PLNSOL,UY !结果列表,绘制第1振型
SET,1,20
PLNSOL,UY
PLNSOL,ROTZ
ANMODE,10,0.2 !帧数(默认为5),延迟时间(默认为0.1s) !绘制第8阶振型并制作动画
ETABLE,MI,SMISC,3
ETABLE,MJ,SMISC,16
PLLS,MI,MJ !绘制弯曲分布
/ESHAPE,1
PLNSOL,UY
PLNSOL,ROTZ !带单元形状绘制振型