今日3款Stable Diffusion模型推荐,让你轻松成为AI作图大师!模型推荐系列

前言

今天又给大家带了三款不错的模型推荐给大家,需要的朋友可以根据链接自行获取。今天给大家继续推荐三款AI作图模型。

2024-03-17 今日3款模型推荐:

1、 CyberRealistic 类型 Checkpoint

**推荐理由:**专门为生成人物照片而设计的。能够以惊人的逼真度创造出照片般真实的人物形象

作品赏析:

2、 Deliberate for Invoke 类型 Checkpoint

**推荐理由:**一款非常灵活的模型,能够产生各种风格的杰出人物、风景、建筑等。

作品赏析:

3、 Analog Madness - Realistic model 类型Checkpoint****

推荐理由 😗***一款相片级效果写实风格大模型,可以以假乱真的出图模型。

作品赏析:

在这里插入图片描述

好了今天的模型分享就到这里了这里直接将该软件分享出来给大家吧

目前 ControlNet 已经更新到 1.1 版本,相较于 1.0 版本,ControlNet1.1 新增了更多的预处理器和模型,每种模型对应不同的采集方式,再对应不同的应用场景,每种应用场景又有不同的变现空间

我花了一周时间彻底把ControlNet1.1的14种模型研究了一遍,跑了一次全流程,终于将它完整下载好整理成网盘资源。

其总共11 个生产就绪模型、2 个实验模型和 1 个未完成模型,现在就分享给大家,点击下方卡片免费领取。

img

1. 线稿上色

**方法:**通过 ControlNet 边缘检测模型或线稿模型提取线稿(可提取参考图片线稿,或者手绘线稿),再根据提示词和风格模型对图像进行着色和风格化。

**应用模型:**Canny、SoftEdge、Lineart。

Canny 示例:(保留结构,再进行着色和风格化)

img

2. 涂鸦成图

方法:通过 ControlNet 的 Scribble 模型提取涂鸦图(可提取参考图涂鸦,或者手绘涂鸦图),再根据提示词和风格模型对图像进行着色和风格化。

应用模型:Scribble。

Scribble 比 Canny、SoftEdge 和 Lineart 的自由发挥度要更高,也可以用于对手绘稿进行着色和风格处理。Scribble 的预处理器有三种模式:Scribble_hed,Scribble_pidinet,Scribble_Xdog,对比如下,可以看到 Scribble_Xdog 的处理细节更为丰富:

img

Scribble 参考图提取示例(保留大致结构,再进行着色和风格化):

img

3. 建筑/室内设计

**方法:**通过 ControlNet 的 MLSD 模型提取建筑的线条结构和几何形状,构建出建筑线框(可提取参考图线条,或者手绘线条),再配合提示词和建筑/室内设计风格模型来生成图像。

**应用模型:**MLSD。

MLSD 示例:(毛坯变精装)

img

这份完整版的ControlNet 1.1模型我已经打包好,需要的点击下方插件,即可前往免费领取!

4. 颜色控制画面

**方法:**通过 ControlNet 的 Segmentation 语义分割模型,标注画面中的不同区块颜色和结构(不同颜色代表不同类型对象),从而控制画面的构图和内容。

**应用模型:**Seg。

Seg 示例:(提取参考图内容和结构,再进行着色和风格化)

img

如果还想在车前面加一个人,只需在 Seg 预处理图上对应人物色值,添加人物色块再生成图像即可。

img

5. 背景替换

**方法:**在 img2img 图生图模式中,通过 ControlNet 的 Depth_leres 模型中的 remove background 功能移除背景,再通过提示词更换想要的背景。

**应用模型:**Depth,预处理器 Depth_leres。

**要点:**如果想要比较完美的替换背景,可以在图生图的 Inpaint 模式中,对需要保留的图片内容添加蒙版,remove background 值可以设置在 70-80%。

Depth_leres 示例:(将原图背景替换为办公室背景)

img

6. 图片指令

**方法:**通过 ControlNet 的 Pix2Pix 模型(ip2p),可以对图片进行指令式变换。

应用模型:ip2p,预处理器选择 none。

**要点:**采用指令式提示词(make Y into X),如下图示例中的 make it snow,让非洲草原下雪。

Pix2Pix 示例:(让非洲草原下雪)

img

7. 风格迁移

**方法:**通过 ControlNet 的 Shuffle 模型提取出参考图的风格,再配合提示词将风格迁移到生成图上。

**应用模型:**Shuffle。

Shuffle 示例:(根据魔兽道具风格,重新生成一个宝箱道具)

img

8. 色彩继承

**方法:**通过 ControlNet 的 t2iaColor 模型提取出参考图的色彩分布情况,再配合提示词和风格模型将色彩应用到生成图上。

**应用模型:**Color。

Color 示例:(把参考图色彩分布应用到生成图上)

img

这份完整版的ControlNet 1.1模型我已经打包好,需要的点击下方插件,即可前往免费领取!

这里就简单说几种应用:

1. 人物和背景分别控制

2. 三维重建

3. 更精准的图片风格化

4. 更精准的图片局部重绘

以上就是本教程的全部内容了,重点介绍了controlnet模型功能实用,当然还有一些小众的模型在本次教程中没有出现,目前controlnet模型确实还挺多的,所以重点放在了官方发布的几个模型上。

同时大家可能都想学习AI绘画技术,也想通过这项技能真正赚到钱,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学,因为自身做副业需要,我这边整理了全套的Stable Diffusion入门知识点资料,大家有需要可以直接点击下边卡片获取,希望能够真正帮助到大家。
在这里插入图片描述

img

### 关于Stable Diffusion模型的最佳实践 #### 数据预处理的重要性 对于任何机器学习项目而言,数据的质量至关重要。在准备用于训练或微调Stable Diffusion的数据集时,应确保输入图片具有足够的分辨率并经过适当清理以去除噪声和其他不必要的特征[^2]。 #### 模型选择建议 当考虑使用不同版本的Stable Diffusion模型时,可以根据具体需求来决定最适合的选择。如果追求更高的细节表现力,则可以选择SDXL系列;而对于计算资源有限的情况来说,早期版本如1.4/1.5可能更为合适因为它们所需硬件条件较低。 #### 训练技巧分享 为了获得更好的效果,在实际应用过程中可以尝试调整超参数设置比如迭代次数、批量大小以及学习率等,并利用迁移学习方法加快收敛速度同时提高最终成果质量。此外,还可以探索不同的损失函数组合方式以便更好地优化目标函数[^1]。 #### 应用场景拓展 除了传统的艺术创作领域外,现在越来越多的企业也开始关注如何将此类先进的人工智能工具应用于产品设计、广告营销等多个方面。因此,深入理解该技术背后的工作机制有助于发现更多潜在机会并创造出更具创新性的解决方案[^3]。 ```python import torch from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler model_id = "CompVis/stable-diffusion-v1-4" scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler) prompt = "A beautiful landscape painting with mountains and rivers." image = pipe(prompt).images[0] image.save("output_image.png") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值