excel统计分析——多组数据的秩和检验

       单因素资料不完全满足方差的基本假定时,可进行数据转换后再进行方差分析,但有时数据转换后仍不满足方差分析的基本假定,就只能进行秩和检验了。

        多组数据秩和检验的主要方法为Kruskal-Wallis检验,也称为Kruskal-Wallis秩和方差分析或H检验。Kruskal-Wallis不要求总体呈正态分布,但要求总体方差相等,为连续总体,各组效应相互独立,所有样本来自随机抽样,利用秩和来推断样本所在总体分布是否相同。

       Kruskal-Wallis秩和检验的基本思想如下:在H0成立的前提下,k个样本中的任何观察值取秩为1~N的概率相等。因此,每个样本平均秩的期望值均为\bar{R}=(N+1)/2,检验统计量H=12\sum(\bar{R_i}-\bar{R_j})^2/[N(N+1)]反映实际获得的k个独立样本的平均秩与期望值的偏离程度。样本平均秩与\bar{R}相差越大,则H越大,P越小;反之,H越大,P越小。当H0成立时,随着样本容量的增长,H近似服从自由度为k-1的卡方分布。当k及样本容量较小时,可直接计算统计量H的概率分布,构造适于实际应用的H临界值表,以确定P值。当k及样本容量较大时,可利用卡方分布进行检验。

       Kruskal-Wallis秩和检验的基本步骤如下:

(1)提出假设。

         零假设H0:各样本的总体分布相同。

         备择假设HA:各样本的总体分布不完全相同。

(2)编秩次、求秩和。

         将各样本数据混合,从小到大编秩次。遇观察值相同时,求平均秩次。将各样本观察值对应的秩次分别累加,求出各样本的秩和。

(3)确定检验统计量H:

H=\frac{12}{N(N+1)}\sum_{j=1}^k\frac{R_j^2}{n_j}-3(N+1)

其中:Rj为第j个样本的秩和;nj为第j个样本容量;N为样本总量,即N=\sum n_j。如多个观察值同秩,则按下式求矫正的Hc:

H_c=\frac{1}{s^2}[\sum_{j=1}^k \frac{R_j^2}{n_j}-\frac{N(N+1)^2}{4}]

其中,s^2为所有观察值秩转换后形成的秩变量的方差,与观察值的方差相同,即

s^2=\frac{1}{N-1}(\sum_{j=1}^k\sum_{i=1}^{n_j}R_{ij}^2-\frac{N(N+1)^2}{4})

Rij为第j个样本第i个观察值的秩次。

或按下式求矫正Hc:

H_c=H/[1-\frac{\sum(t_j^3-t)}{N^3-N}]

其中,tj表示某个同秩的个数

(4)统计推断。

        当k≤3且n_i≤5时,可直接查Kruskal-Wallis秩和检验临界值表,H与临界值Hα比较,如果H<Hα,则P>α,表明各样本总体分布在α水平上差异不显著。当样本数k>3或n_i>5时,H近似服从df=k-1的卡方分布,可进行卡方检验。

excel案例操作如下:

①计量资料秩和检验

②等级资料秩和检验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值