实战营链接:https://aicarrier.feishu.cn/wiki/KamPwGy0SiArQbklScZcSpVNnTb
视频链接:书生·浦语大模型全链路开源体系_哔哩哔哩_bilibili
InternLM2 技术报告:https://arxiv.org/pdf/2403.17297
目录
一、视频学习
1.模型分类
专用模型、通用模型
2.书生·浦语开源生态
3.书生·浦语2.0的优势
4.从模型选型到模型部署流程图
5.书生·浦语提供的开源模型
从 数据集->预训练->微调->部署->评测->应用 全覆盖的工具。
5.1书生·万卷数据集
5.2预训练InternLM-Train
5.3微调XTuner
5.4测评OpenCompass2.0司南大模型测评体系
5.5部署LMDeploy
5.6智能体Lagent
二、技术文档
大语言模型的发展包括预训练、监督微调(SFT)和基于人类反馈的强化学习(RLHF)等主要阶段 (Ouyang et al., 2022)。预训练主要基于利用大量的自然文本语料库,积累数万亿的token。这个阶段的目标是为大语言模型配备广泛的知识库和基本技能。预训练阶段的数据质量被认为是最重要的因素。然而,过去关于大语言模型的技术报告 (Touvron et al., 2023a;b; Bai etal., 2023a; Bi et al., 2024)很少关注预训练数据的处理。InternLM2详细描述了如何为预训练准备文本、代码和长文本数据。
1.InternEvo:
在预训练、SFT 和 RLHF 中使用的训练框架 InternEvo
2.模型架构
在Transformer架构基础上进行了改进,将LayerNorm(Ba et al. (2016))替换为RMSNorm(Zhang & Sennrich (2019)),并采用SwiGLU(Shazeer (2020))作为激活函数,从而提高了训练效率和性能。
3.预训练
3.1预训练数据处理
3.2预训练设置
进行分词(Tokenization)和预训练的超参数设置
3.3预训练
用于预训练1.8B、7B和20B模型的总的token数范围从2.0T到2.6T,预训练过程包括三个不同的阶段。在第一阶段,我们使用了长度不超过4k的预训练语料库。在第二阶段,我们包括了长度不超过32k的50%的预训练语料库。在第三阶段,我们使用了特定能力的增强数据。在每一阶段,我们都混合了英文、中文和代码数据。
4.对齐
通常包含两个阶段:监督微调(SFT)和基于人类反馈的强化学习(RLHF)
4.1监督微调
4.2基于人类反馈的条件在线强化学习COOL RLHF
5测评
总结
书生·浦语大模型实战营第二期培训课程为参与者提供了一个全面的视角,以理解书生·浦语大模型的全链路开源体系和InternLM2的技术亮点。书生·浦语大模型不仅在技术上取得了显著的进步,而且在实际应用中展现出了强大的能力和潜力。这些进步不仅推动了人工智能领域的发展,也为未来的科技创新和应用提供了坚实的基础。