贝叶斯图像分类实验

本文介绍了一种基于最小错误率的贝叶斯分类器在图像分类中的应用,特别是用于图像阈值分割。实验阐述了贝叶斯决策理论,并通过迭代算法求取最优阈值,以达到最小化分类错误率的目的。尽管存在全局阈值的问题,但该方法展示了在图像分割中的初步效果。
摘要由CSDN通过智能技术生成

 

贝叶斯分类器

一 实验目的

将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。

二 实验原理

贝叶斯图像分类的设计是基于贝叶斯决策理论的。贝叶斯决策理论是统计模式识别的基本理论,其假设第一,各类别总体的概率分布是已知的;第二:要决策分类的类别数是一定的。贝叶斯决策理论研究了模式类的概率结构完全知道的理想情况。这种情况实际中极少出现,但提供了一个对比其它分类器的依据,即“最优”分类器。

常用的决策分类器主要有以下几种。最小错误率的贝叶斯决策规则,最小风险决策规则,NP决策规则以及极小极大决策规则。本次实验运用的主要是基于最小错误率的贝叶斯分类器。基于最小错误率的贝叶斯分类器的主要思想是:利用贝叶斯公式使得错误率最小。贝叶斯分类以贝叶斯定理为基础,通过训练大量样本来估计后验概率。

贝叶斯公式通过类条件概率密度形式的观察值,将先验概率转化为后验概率。

图像阈值分割是一种广泛应用的分割技术,利用图像中要提取的目标区域与其背景在灰度特性上的差异,把图像看作具有不同灰度级的两类区域(目标区域和背景区域)的组合,选取一个比较合理的阈值,以确定图像中每个像素点应该属于目标区域还是背景区域,从而产生相应的二值图像。本次实验利用最小错误率贝叶斯分类方法确定图像分割阈值。

  图像中目标与背景有一定的交错,会产生将目标错分为背景与将背景错分为目标两类错误,通过Bayes最小错误率分类器求取“最优阈值”可令总的错误率最小。

假设目标与背景两类像素值均服从正态分布且混有加性高斯噪声,分类问题可以使用最小错分概率贝叶斯分类器来解决。

图像的混合概率密度函数可用下式表示;

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值