什么是定积分

本文深入探讨了定积分与不定积分的区别,通过实例说明不定积分是求反导数的过程,而定积分则用于计算特定区间的累积效果。举例解释了如何利用不定积分求解匀加速运动的距离问题,并进一步展示了在复杂速度函数下,如何运用定积分计算特定时间段内的位移。此外,还提供了更复杂的例子,展示在速度与时间关系为二次多项式时,如何运用定积分求解某时段内的距离。
摘要由CSDN通过智能技术生成

什么是定积分和不定积分区别在哪里

  上一篇我们讲解了不定积分的本质其实就是反微分函数(或者叫做反求导函数),就是一个函数通过运算求得导数或者微分,在把这个运算反过来,求得原函数的过程。
  这篇主要是把定积分通过不定积分求出来,思路推导大概是:已知导数函数或者说是微分函数,通过导数函数求出不定积分函数,然后通过定积分的上下限,做差,约掉未知常数项,剩下的部分就是定积分。
例如 ∫ 0 5 2 t d t = 5 2 + C − ( 0 2 + C ) = 25 \int_0^5{2t}{dt}=5^2+C-(0^2+C)=25 052tdt=52+C(02+C)=25

下面我们通过举例子来理解:
马拉松跑步,运动员阿强,从起点出发(起点坐标为0),匀加速运动,速度公式 v = 2 t v=2t v=2t,求5s的时候,跑出的距离是多少
在这里插入图片描述

如果根据上一篇的不定积分,我们可以求出 S = ∫ 2 t d t = t 2 + c S=\int 2t dt=t^2+c S=2tdt=t2+c,但已知条件t=0时,S=0,带入式中得到C=0,所以用不定积分也求出了最终 S = 5 2 + 0 = 25 S=5^2+0=25 S=52+0=25
那我们用定积分如何求:
∫ t 1 t 2 2 t d t = ∫ 2 t 2 d t − ∫ 2 t 1 d t = t 2 2 + C − t 1 2 + C = t 2 2 − t 1 2 \int_{t_1}^{t_2}{2t}{dt}=\int {2t_2}{dt}-\int {2t_1}{dt}=t_2^2+C-t_1^2+C=t_2^2-t_1^2 t1t22tdt=2t2dt2t1dt=t22+Ct12+C=t22t12
t 1 = 0 t_1=0 t1=0 t 2 = 5 t_2=5 t2=5带入求得 S = ∫ t 1 t 2 2 t d t = 25 S=\int_{t_1}^{t_2}{2t}{dt}=25 S=t1t22tdt=25


我们换一个复杂一点的例子,上一个例子太简单,用简单的初中物理知识也可以简单计算出来,我们假设小强跑步的速度和时间关系为 v = 2 t 2 + t + 2 v=2t^2+t+2 v=2t2+t+2(现实中虽然不存在这种人),而且并不知道某时刻的距离S位置,这样用不定积分就没有办法具体的求距离S。但我们用定积分就很容易求出来某时段的距离,比如在2s到5s中间跑了多少距离。下面公式代入:
∫ t 1 t 2 ( 2 t 2 + t + 2 ) d t = ∫ ( 2 t 2 2 + t 2 + 2 ) d t − ∫ ( 2 t 1 2 + t 1 + 2 ) d t = 2 3 t 2 3 + 1 2 t 2 2 + 2 t 2 + C − ( 2 3 t 1 3 + 1 2 t 1 2 + 2 t 1 + C ) \int_{t_1}^{t_2}{(2t^2+t+2)}{dt}=\int (2t_2^2+t_2+2)dt-\int (2t_1^2+t_1+2)dt=\frac {2}{3}t_2^3+\frac {1}{2}t_2^2+2t_2+C-(\frac {2}{3}t_1^3+\frac {1}{2}t_1^2+2t_1+C) t1t22t2+t+2dt=(2t22+t2+2)dt(2t12+t1+2)dt=32t23+21t22+2t2+C(32t13+21t12+2t1+C)
则任何时间段的S值都可以用定积分求出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值