什么是定积分和不定积分区别在哪里
上一篇我们讲解了不定积分的本质其实就是反微分函数(或者叫做反求导函数),就是一个函数通过运算求得导数或者微分,在把这个运算反过来,求得原函数的过程。
这篇主要是把定积分通过不定积分求出来,思路推导大概是:已知导数函数或者说是微分函数,通过导数函数求出不定积分函数,然后通过定积分的上下限,做差,约掉未知常数项,剩下的部分就是定积分。
例如
∫
0
5
2
t
d
t
=
5
2
+
C
−
(
0
2
+
C
)
=
25
\int_0^5{2t}{dt}=5^2+C-(0^2+C)=25
∫052tdt=52+C−(02+C)=25
下面我们通过举例子来理解:
马拉松跑步,运动员阿强,从起点出发(起点坐标为0),匀加速运动,速度公式
v
=
2
t
v=2t
v=2t,求5s的时候,跑出的距离是多少
如果根据上一篇的不定积分,我们可以求出
S
=
∫
2
t
d
t
=
t
2
+
c
S=\int 2t dt=t^2+c
S=∫2tdt=t2+c,但已知条件t=0时,S=0,带入式中得到C=0,所以用不定积分也求出了最终
S
=
5
2
+
0
=
25
S=5^2+0=25
S=52+0=25。
那我们用定积分如何求:
∫
t
1
t
2
2
t
d
t
=
∫
2
t
2
d
t
−
∫
2
t
1
d
t
=
t
2
2
+
C
−
t
1
2
+
C
=
t
2
2
−
t
1
2
\int_{t_1}^{t_2}{2t}{dt}=\int {2t_2}{dt}-\int {2t_1}{dt}=t_2^2+C-t_1^2+C=t_2^2-t_1^2
∫t1t22tdt=∫2t2dt−∫2t1dt=t22+C−t12+C=t22−t12
t
1
=
0
t_1=0
t1=0,
t
2
=
5
t_2=5
t2=5带入求得
S
=
∫
t
1
t
2
2
t
d
t
=
25
S=\int_{t_1}^{t_2}{2t}{dt}=25
S=∫t1t22tdt=25。
我们换一个复杂一点的例子,上一个例子太简单,用简单的初中物理知识也可以简单计算出来,我们假设小强跑步的速度和时间关系为
v
=
2
t
2
+
t
+
2
v=2t^2+t+2
v=2t2+t+2(现实中虽然不存在这种人),而且并不知道某时刻的距离S位置,这样用不定积分就没有办法具体的求距离S。但我们用定积分就很容易求出来某时段的距离,比如在2s到5s中间跑了多少距离。下面公式代入:
∫
t
1
t
2
(
2
t
2
+
t
+
2
)
d
t
=
∫
(
2
t
2
2
+
t
2
+
2
)
d
t
−
∫
(
2
t
1
2
+
t
1
+
2
)
d
t
=
2
3
t
2
3
+
1
2
t
2
2
+
2
t
2
+
C
−
(
2
3
t
1
3
+
1
2
t
1
2
+
2
t
1
+
C
)
\int_{t_1}^{t_2}{(2t^2+t+2)}{dt}=\int (2t_2^2+t_2+2)dt-\int (2t_1^2+t_1+2)dt=\frac {2}{3}t_2^3+\frac {1}{2}t_2^2+2t_2+C-(\frac {2}{3}t_1^3+\frac {1}{2}t_1^2+2t_1+C)
∫t1t2(2t2+t+2)dt=∫(2t22+t2+2)dt−∫(2t12+t1+2)dt=32t23+21t22+2t2+C−(32t13+21t12+2t1+C)
则任何时间段的S值都可以用定积分求出。